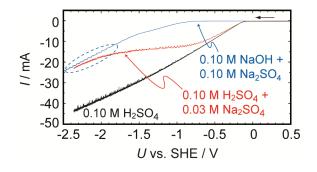
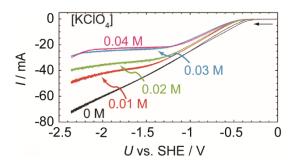


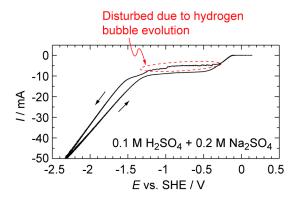
Supplementary Material

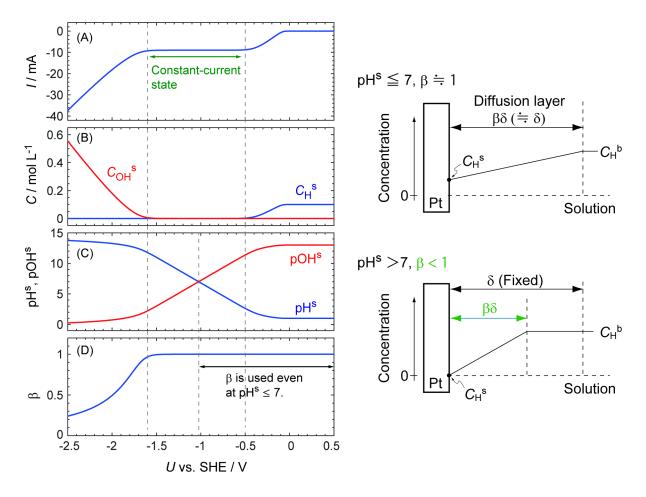

An ordinary differential equation model for simulating local-pH change at electrochemical interfaces

Yoshiharu Mukouyama^{1,2} and Shuji Nakanishi^{2,3}


¹Division of Science, College of Science and Engineering, Tokyo Denki University, Hatoyama, Saitama 350-0394, Japan

²Research Center for Solar Energy Chemistry, Osaka University, Toyonaka, Osaka 560-8531, Japan


³Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan


Figure S1 Current (*I*) - potential (*U*) curves for H_2SO_4 and NaOH solutions as obtained under controlled potential conditions at a scan rate of 0.01 V s⁻¹. The working electrode was a 2 mm diameter Pt disc.

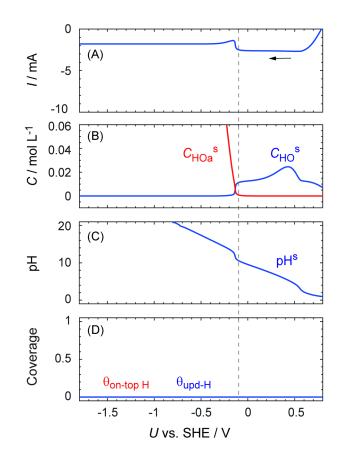

Figure S2 *I* - *U* curves for 0.15 M HClO₄ + x M KClO₄ solutions where x is 0, 0.01, 0.02, 0.03 and 0.04, as obtained under controlled potential conditions at a scan rate of 0.01 V s⁻¹. The working electrode was a 4 mm length Au wire (0.5 mm in diameter).

Figure S3 An *I* - *U* curve for 0.1 M H_2SO_4 solution containing 0.2 M Na_2SO_4 as obtained under controlled potential conditions at a scan rate of 0.01 V s⁻¹. The working electrode was a 4 mm length Pt wire (0.5 mm in diameter).

Figure S4 (left) Simulated curves generated using the same process as described in the caption to Figure 6 except that Eq. 17-2 was used to calculate dC_{H}^{s}/dt . (right) The near-surface concentration profile of H⁺ ions.

Figure S5 Simulated curves generated using the same process as described in the caption to Figure 8 except that Eq. 17 was used to calculate dC_{H}^{s}/dt .