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Appendix 1. Model Extensions 

 

1.1 Extension to time-varying inputs.  

 

The field model Equations (11), (12) can be conveniently used to compute the transient firing rate 

dynamics of the network in response to the time-varying external input. For inhomogeneous Poisson 

external inputs with time-dependent firing rate 𝑄𝑜(𝑡), the constant term 𝑄𝑜 in Equation (12) can 

just be modified to the time-dependent term 𝑄𝑜(𝑡) and the field model can be simulated directly 

in this way. Note that a good estimation of the effective parameter 𝜎𝐸 , 𝜎𝐼 may depend on 𝑄𝑜, as 

the estimation result given by Equation (10) depends on 𝑄𝑜. However, we point out that if 𝑄𝑜(𝑡) 

does not change very strongly, the parameters 𝜎𝐸 , 𝜎𝐼 can be kept constant throughout the change 

of 𝑄𝑜(𝑡) once they have been estimated. To demonstrate this, we set a time-varying input 

𝑄𝑜(𝑡) =

{
 
 

 
 𝜆 , 𝑡 ∈ [0, 200)

4𝜆 , 𝑡 ∈ [200, 400)
2𝜆 , 𝑡 ∈ [400, 500)

2𝜆(1 + sin [
𝜋

100
(𝑡 − 500)]) , 𝑡 ∈ [500, 800]

              (S1) 

with 𝜆 = 5𝐻𝑧 for each neuron as shown in Supplementary Figure S1A. Here, we do not consider 

the synaptic transmission delay and the synaptic decay times are set as 𝜏𝑑
𝐸 = 𝜏𝑑

𝐼 = 4 𝑚𝑠 , 𝜏𝑟 =

0 𝑚𝑠, where the network would be in asynchronous dynamics. Note that the external input 𝑄𝑜(𝑡) 

contains constant part, discontinuous jumps and continuous changes. Simulations show that the 

firing rate changes accordingly respondent to the change of input, as can be seen from the raster plot 

in Supplementary Figure S1B. At the same time, we can simulate the field model Equations (11), 

(12) with the same time-varying input and with fixed parameters 𝜎𝐸 , 𝜎𝐼 used in Figure 2B. 

As shown in Supplementary Figure S1C, the field model predicts the changing trend of the average 

firing rate of the network. It should be noted that this simple scheme ignores some complex nature 

of the firing rate response properties in the presence of synaptic filtering (Moreno-Bote and Parga, 

2004; Ledoux and Brunel, 2011). 
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1.2 Extension to conductance-based models.  

 

The present mean-field theory can be directly generalized to conductance-based (COB) model 

where the postsynaptic inputs received by each neuron depend on the membrane potential of the 

neuron. Specifically, we further study a COB model with the dynamic equation Equation (1) 

replaced by 

𝑑𝑉𝑖

𝑑𝑡
= 𝑓𝛼(𝑉𝑖) + (𝑉𝐸

𝑟𝑒𝑣 − 𝑉𝑖)[𝑔𝛼𝑜 ∑ 𝐹𝐸 ∗ 𝑠𝑗(𝑡 − 𝜏𝑙
𝐸)𝑗∈𝜕𝑖

𝑜 +             (S2) 

𝑔𝛼𝐸 ∑ 𝐹𝐸 ∗ 𝑠𝑗(𝑡 − 𝜏𝑙
𝐸)𝑗∈𝜕𝑖

𝐸 ] + (𝑉𝐼
𝑟𝑒𝑣 − 𝑉𝑖)𝑔𝛼𝐼∑ 𝐹𝐼 ∗ 𝑠𝑗(𝑡 − 𝜏𝑙

𝐼)𝑗∈𝜕𝑖
𝐼             

Here, the reversal potential for excitatory and inhibitory synaptic currents are 𝑉𝐸
𝑟𝑒𝑣 = 0 𝑚𝑉 and 

𝑉𝐼
𝑟𝑒𝑣 = −70 𝑚𝑉  respectively. The synaptic strengths of conductance are set as 𝑔𝐸𝑂 = 0.025 , 

𝑔𝐼𝑂 = 0.04, 𝑔𝐸𝐸 = 0.02, 𝑔𝐼𝐸 = 0.04, 𝑔𝐸𝐼 = 0.27, 𝑔𝐼𝐼 = 0.48. Other notations, parameters and 

settings are the same as the current-based (CUB) case. Similar to the CUB model, the COB model 

shows emergence of collective oscillation induced by slow inhibition. Such a critical transition can 

also be predicted by our mean-field theory as a Hopf bifurcation, while the derivation of the field 

equation is slightly different. In the CUB case, the field equation Equation (12) can be obtained by 

taking the average 〈. 〉𝛼 of the original equation Equation (1) under mean-field assumption. In the 

COB case, we still can take the average 〈. 〉𝛼 of the Equation (S2) under mean-field assumption, 

but have to proceed with the decoupling assumption that 

〈𝑉𝑖[𝑔𝛼𝐸 ∑ 𝐹𝐸 ∗ 𝑠𝑗(𝑡 − 𝜏𝑙
𝐸)𝑗∈𝜕𝑖

𝐸 + 𝑔𝛼𝐼 ∑ 𝐹𝐼 ∗ 𝑠𝑗(𝑡 − 𝜏𝑙
𝐼)𝑗∈𝜕𝑖

𝐼 ]〉𝛼 ≈        (S3) 

〈𝑉𝑖〉𝛼 〈𝑔𝛼𝐸 ∑ 𝐹𝐸 ∗ 𝑠𝑗(𝑡 − 𝜏𝑙
𝐸)𝑗∈𝜕𝑖

𝐸 + 𝑔𝛼𝐼 ∑ 𝐹𝐼 ∗ 𝑠𝑗(𝑡 − 𝜏𝑙
𝐼)𝑗∈𝜕𝑖

𝐼 〉𝛼             

This is based on the fact that in an E-I balanced network where neurons spike irregularly, one expects 

that at any given time 𝑡 , the correlation between the membrane potential and the recurrent E, I 

conductance input for different neurons is small. As such, we get the field equations 

𝑑𝑉𝛼

𝑑𝑡
= 𝑓𝛼(𝑉𝛼) + (𝑉𝐸

𝑟𝑒𝑣 − 𝑉𝛼) [𝑔𝛼𝑜 (𝑛𝑜𝑄𝑜 +√
𝑛𝑜𝑄𝑜

𝑁𝛼
𝜉𝛼(𝑡)) + 𝑔𝛼𝐸Φ𝐸] +     (S4) 

(𝑉𝐼
𝑟𝑒𝑣 − 𝑉𝛼)𝑔𝛼𝐼Φ𝐼 , 𝛼 = 𝐸, 𝐼 

 

to replace Equation (12), where Φ𝛼(𝑡) = 〈∑ 𝐹𝛼 ∗ 𝑠𝑗(𝑡 − 𝜏𝑙
𝛼)𝑗∈𝜕𝑖

𝛼 〉𝐸,𝐼  still obeys Equation (11). 

Thus, Equations (11), (S4) constitute the field equations of the COB model Equation (S2). The 

sigmoid relation Equation (9) can still be assumed and 𝜎𝐸 , 𝜎𝐼 can be estimated in a numerical way 

through Equation (10). A summarization and comparison between the field equations of CUB model 

Equation (1) and COB model Equation (S2) is as follows. 

 

CUB: 

{
 
 

 
 𝑑𝑉𝛼

𝑑𝑡
= 𝑓𝛼(𝑉𝛼) + 𝐽𝛼𝑜 (𝑛𝑜𝑄𝑜 +√

𝑛𝑜𝑄𝑜

𝑁𝛼
𝜉𝛼(𝑡)) + 𝐽𝛼𝐸Φ𝐸 + 𝐽𝛼𝐼Φ𝐼

(𝜏𝑑
𝛼 𝑑

𝑑𝑡
+ 1)(𝜏𝑟

𝑑

𝑑𝑡
+ 1)Φ𝛼 =

𝑛𝛼 

[1+exp(
𝑉𝑡ℎ−𝑉𝛼(𝑡−𝜏𝑙

𝛼)

𝜎𝛼

𝜋

√3
)]

, 𝛼 = 𝐸, 𝐼
           (S5) 

 

 



COB: 

 

{
 
 

 
 𝑑𝑉𝛼
𝑑𝑡
= 𝑓𝛼(𝑉𝛼) + (𝑉𝐸

𝑟𝑒𝑣 − 𝑉𝛼) [𝑔𝛼𝑜 (𝑛𝑜𝑄𝑜 +√
𝑛𝑜𝑄𝑜

𝑁𝛼
𝜉𝛼(𝑡)) + 𝑔𝛼𝐸Φ𝐸] + (𝑉𝐼

𝑟𝑒𝑣 − 𝑉𝛼)𝑔𝛼𝐼Φ𝐼

(𝜏𝑑
𝛼 𝑑

𝑑𝑡
+ 1)(𝜏𝑟

𝑑

𝑑𝑡
+ 1)Φ𝛼 =

𝑛𝛼 

[1+exp(
𝑉𝑡ℎ−𝑉𝛼(𝑡−𝜏𝑙

𝛼)

𝜎𝛼

𝜋

√3
)]

, 𝛼 = 𝐸, 𝐼
 (S6) 

 

The calculation of the steady-state and its stability analysis at zero transmission delays can be 

performed in the same way as in CUB model. The qualitative results are similar to the CUB model. 

There is a critical value 𝜏𝑑
𝐼∗  such that when 𝜏𝑑

𝐼 < 𝜏𝑑
𝐼∗  the steady-state is a stable focus, 

corresponding to the asynchronous strict balance state of the network. For 𝜏𝑑
𝐼 > 𝜏𝑑

𝐼∗, the steady-

state destabilizes through a supercritical Hopf bifurcation (Supplementary Figure S1D), 

corresponding to the onset of collective oscillation in the network, as shown by the PCC in 

Supplementary Figure S1E. The spiking of individual neurons are still irregular, as can be seen 

from the high CV of ISIs in Supplementary Figure S1F. Furthermore, near the Hopf bifurcation 

point, the COB model exhibits critical properties in terms of avalanche dynamics similar to the 

results of CUB model. Overall, the quality of theoretical prediction in the COB case is worse than 

the CUB case. Indeed, the COB input would lead membrane potential more bias to a Gaussian 

distribution (Richardson and Gerstner, 2005), an assumption in our derivation. A complete analytical 

treatment of COB model is very challenging (Renart et al., 2004). However, the semi-analytical 

mean-field approach here constitutes an effective description of the macroscopic dynamics of E-I 

network, which has an advantage that it works for both CUB and COB dynamics.  

 

 

 

Supplementary Reference 

 

Ledoux, E., and Brunel, N. (2011). Dynamics of networks of excitatory and inhibitory neurons in 

response to time-dependent inputs. Front. Comput. Neurosci. 5, 25. 

Moreno-Bote, R., and Parga, N. (2004). Role of synaptic filtering on the firing response of simple 

model neurons. Phys. Rev. Lett. 92, 28102. 

Renart, A., Brunel, N., and Wang, X.-J. (2004). Mean-field theory of irregularly spiking neuronal 

populations and working memory in recurrent cortical networks. Comput. Neurosci. A Compr. 

approach, 431–490. 

Richardson, M. J. E., and Gerstner, W. (2005). Synaptic shot noise and conductance fluctuations affect 

the membrane voltage with equal significance. Neural Comput. 17, 923–947. 

 

  



 

Appendix 2. Sensitivity of the Critical Points on the Effective Parameters  

 

The mean-field scheme to derive the field equations introduces two effective parameters 𝜎𝐸 , 𝜎𝐼 to 

construct the voltage-dependent firing rate relation Equation (9) and they are the crucial quantities 

that determine the quality of the scheme. Thus, it is important to know how the theoretically 

predicted critical point 𝜏𝑑
𝐼∗ depends on the choice of 𝜎𝐸 , 𝜎𝐼. 

  Although the critical point in the field model can be thought as a Hopf bifurcation point, the 

concept of critical point is not decisive in the E-I spiking neuronal network. This can be seen from 

Figure 2D and Supplementary Figure S1B which show that the spiking correlation increases in a 

somewhat continuous way as 𝜏𝑑
𝐼  increases. As a rough approximation, we define the critical point 

in the E-I spiking network as the parameter value where the distance of the avalanche size 

distribution to its best fit power law distribution, 𝐷 defined in Materials and Methods, is minimal, 

as shown in Figure 3C. We stress that the critical properties of avalanche shown in Figure 3 are 

statistical properties so that for parameters close enough to this critical value, critical properties can 

still maintain in a statistically significant manner. However, if there are several avalanche data sets 

with sufficient evidence to claim criticality, to judge which one is closer to criticality is still a 

challenging open issue. We find that for large network size, if 𝜎𝐸 , 𝜎𝐼 are estimated in the numerical 

way through Equation (10), the critical point in the spiking network, is very close to the Hopf 

bifurcation point in the field model. We denote 𝜏𝑑
𝐼∗ as the Hopf bifurcation point under this ‘optimal’ 

estimation of the parameters 𝜎𝐸 , 𝜎𝐼 using Equation (10).  

  We compute the Hopf bifurcation point 𝜏𝑑
𝐼 𝐻𝑜𝑝𝑓(𝜎𝐸 , 𝜎𝐼)  predicted by the field model for 

different values of 𝜎𝐸 , 𝜎𝐼  and compare it to the ‘real’ critical point (estimated by 𝜏𝑑
𝐼∗ ). The 

difference 𝜏𝑑
𝐼 𝐻𝑜𝑝𝑓(𝜎𝐸 , 𝜎𝐼) − 𝜏𝑑

𝐼∗  of the CUB model and the COB model can be seen in 

Supplementary Figure S2. From Supplementary Figure S2, we can see that once 𝜎𝐸 , 𝜎𝐼  are 

estimated with suitable values, such as by Equation (10), the prediction of the critical synchronous 

transition point is very precise.  

We also notice that the bifurcation point predict by the field model seems to mainly depend on 

the difference 𝜎𝐸 − 𝜎𝐼. Once 𝜎𝐸 − 𝜎𝐼 lies on suitable ranges, the predicted critical point will be 

very close to the ‘real’ one. It can also be noticed that in the CUB model the critical point is not 

sensitive to the values of 𝜎𝐸 , 𝜎𝐼  compared with the COB model, as can be seen from 

Supplementary Figure S2A to C that the difference 𝜏𝑑
𝐼 𝐻𝑜𝑝𝑓(𝜎𝐸 , 𝜎𝐼) − 𝜏𝑑

𝐼∗ is still low for a large 

range of parameter values. On the contrary, the sensitivity in the COB case implies that the COB 

model has more complicated intrinsic dynamic nature that has to be further explored.  

 

 



 
Supplementary Figure 1. Results of the generalized models. (A-C) CUB network dynamics in 

response to time-varying external input. (A) The time-dependent input function 𝑄𝑜(𝑡)  used in 

simulation. (B) Raster plot of the spiking time of neurons (only part of the N =10000 neurons are 

shown). The excitatory/ inhibitory neurons are indicated in blue/red. (C) Comparison of the mean 

firing rate of excitatory population obtained by network simulation and field model simulation. (D-

F) Mean-field theory prediction of the transition from asynchronous to synchronous state in COB 

model. (D) Field equations predict that a Hopf bifurcation occurs as the increase of inhibitory decay 

time 𝜏𝑑
𝐼  at a critical value around 𝜏𝑑

𝐼 ≈ 4.4 𝑚𝑠. The real and imaginary part (divided by 2π) of 

the dominant eigenvalue are given by the solid and dashed lines, respectively. (E) The PCC index 

shows the emergence of network oscillation as the increase of 𝜏𝑑
𝐼  across the bifurcation point. (F) 

The CV of ISI at different value of 𝜏𝑑
𝐼 . The parameters in COB model are set as 𝜏𝑙

𝐸 = 𝜏𝑙
𝐼 = 0 𝑚𝑠, 

𝜏𝑑
𝐸 = 2 𝑚𝑠, 𝜏𝑟 = 0 𝑚𝑠 and 𝑄𝑜 = 5 𝐻𝑧.  

 

 



 

Supplementary Figure 2. Sensitivity of the predicted critical point on the effective parameters. 

The difference value 𝜏𝑑
𝐼 𝐻𝑜𝑝𝑓(𝜎𝐸 , 𝜎𝐼) − 𝜏𝑑

𝐼∗ is shown by color for current-based (CUB) model (A-

C) and conductance-based (COB) model (D-F). White dots in (A-F) indicate the positions of the 

numerical estimation results by Equation (10) and the corresponding estimated critical value 𝜏𝑑
𝐼∗ is 

shown on top of the plots. Black dots in (A-C) indicate the positions of the theoretical estimation 

results by fixed 𝜎𝐸 , 𝜎𝐼 used in Figure 2B in the CUB model. Parameters are 𝜏𝑑
𝐸 = 2 𝑚𝑠 for (A, 

D), 𝜏𝑑
𝐸 = 3 𝑚𝑠 for (B, E), 𝜏𝑑

𝐸 = 4 𝑚𝑠 for (C, F) and 𝑄𝑜 = 5 𝐻𝑧 for all the cases. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Supplementary Figure 3. Effect of using different time bins for measuring avalanches. We 

measure the avalanches of CUB model at critical point 𝜏𝑑
𝐼 = 3 𝑚𝑠  with 𝑄𝑜 = 5 𝐻𝑧  with 

different sizes of time bin. (A) The probability density distribution of the avalanche size. (B) The 

probability density distribution of the avalanche duration. (C) The mean avalanche size with respect 

to a given avalanche duration. Different colored curves are avalanche distributions constructed with 

time bins labeled in (A). We have used the average ISI of the merged spiking train, 𝑇𝑚, as the time 

bin in Figure 3 in the main text. Here, we further compare the results from using 0.5𝑇𝑚 to 5𝑇𝑚. 

It can be seen that the usage of 𝑇𝑚 produces very good critical properties and the results are similar 

when using time bins that are not deviated too much from 𝑇𝑚. However, using a too large time bin 

will induce a ‘bump’ at large value in the avalanche distribution since this captures a large oscillating 

scale of the network. 

 

 

 



 

Supplementary Figure 4. Avalanche size distributions of the data sets. According to our standard, 

the up-state of data Set 1,3,4,5,7,9,13,14,15,17,21,25, plotted by green color, exhibit significant 

power-law size distribution 𝑃(𝑆)~𝑆−𝜏. Refer to Supplementary Table 1 for Details.  

 



 

Supplementary Figure 5. Avalanche duration distributions of the data sets. According to our 

standard, the up-state of data Set 1,3,4,5,6,7,8,9,10,12,13,14,17,18,21,24, plotted by green color, 

exhibit significant power-law duration distribution 𝑃(𝑇)~𝑇−𝛼. Refer to Supplementary Table 1 

for Details.  

 

 

 

 

 

 

  



 

Supplementary Table 1. Estimating the critical exponents of the data sets. The number of 

neurons, length of the up-states, the time bin used in measuring the avalanches, maximum avalanche 

size and duration, those estimated critical exponents, data ranges after truncations and the p-values 

in KS test of the fitted power laws in each data set are shown. Here, the avalanche size and duration 

values are in their original linear scale. 
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m
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