

Supplementary Figure 7: ER α deficiency has no significant impact on transitional B cell development in B6.Sle1b congenic mice or follicular B cell development in B6.Sle1b congenic males. (A) Dot plots show the percentage of splenic transitional B cells (identified as

lymphocyte singlets that were CD5⁻CD19⁺CD93⁺) in female B6. $ER\alpha^{+/+}$, B6. $ER\alpha^{-/-}$, B6. $Sle1b.ER\alpha^{+/+}$, and B6. $Sle1b.ER\alpha^{-/-}$ mice. (B) Representative contour plots from show the frequency of transitional B cells in female B6. $ER\alpha^{+/+}$, B6. $ER\alpha^{-/-}$, B6. $Sle1b.ER\alpha^{+/+}$, and B6. $Sle1b.ER\alpha^{-/-}$ mice. (C) Dot plots show the percentage of splenocytes in male B6. $ER\alpha^{+/+}$, B6. $ER\alpha^{-/-}$, B6. $Sle1b.ER\alpha^{-/-}$, and B6. $Sle1b.ER\alpha^{-/-}$ mice that were transitional B cells. (D) Representative contour plots from show the frequency of transitional B cells in male B6. $ER\alpha^{+/+}$, B6. $ER\alpha^{-/-}$, B6. $Sle1b.ER\alpha^{-/-}$ mice. E) Dot plots show the percentage of splenic follicular B cells (identified as lymphocyte singlets that were CD5⁻CD19⁺CD93⁻CD21⁻CD23⁺) in male B6. $ER\alpha^{+/+}$, B6. $ER\alpha^{-/-}$, B6. $Sle1b.ER\alpha^{-/-}$, B6. $Sle1b.ER\alpha^{-/-}$ mice. (F) Representative contour plots from show the frequency of follicular B cells in male B6. $ER\alpha^{+/+}$, B6. $ER\alpha^{-/-}$, B6. $ER\alpha^{-/-}$, B6. $ER\alpha^{-/-}$, B6. $ER\alpha^{-/-}$ mice. Splenocytes were collected from mice that were 5-6 months of age. The longer horizontal bar in each panel denotes the mean for each group (N=8 per group), and the shorter black bars indicate the standard error of the mean. The ** indicates p≤0.01.