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1. Computation of 2D maps for a dimer of QD’s 

1.1 Electronic structure of the dimers 

We consider an ensemble of 2000 dimers made of two QD’s drawn in an ensemble of 4000 

size dispersed QD’s with a mean diameter,  = 4.4 nm and a Gaussian size dispersion with  

= 5 % : 

       (S1) 

The two QD’s making the dimer are separated by dithiol propane ligands, which leads to a 

surface to surface distance of 0.55nm. Each dimer is made of not quite identical dots because 

of the size dispersion which leads to an ensemble of 2000 ‘quasi’ homodimers.  

 The electronic structure of a single dimer is computed as in ref. (Gattuso et al., 2020a) 

and (Collini et al., 2020) using the effective mass and k.p approximations(Efros et al., 1996; 

Norris and Bawendi, 1996) to determine the hole and electron orbitals that are used to build 

the excitonic Hamiltonian. For each QD, we consider two holes (1S and 2S) and one electron 

(1S) orbitals to build the hole-electron pairs. We take into account the spin-orbit (SO) coupling 

for the two hole states, as well as Coulomb interactions and crystal field splittings, which leads 

to 24 fine structure excitons (hole-electron pairs) per dot.(Efros et al., 1996; Norris and 

Bawendi, 1996; Wong and Scholes, 2011)  

 As explained in the main text, the 24 excitons separate into four main bands of fine 

structure states. The energetic order of these bands depends on the  relative strengths of the SO 

coupling and the 1S-2S energy gap, see refs. (Collini et al., 2019; Collini et al., 2020). For 4.4 

nm QD, the 1S-2S gap is 0.14 eV. The SO coupling value was fitted from 2DES experimental 

spectra of single QD’s of the same 4.4 nm diameter to 0.22 eV.(Collini et al., 2019) Therefore 

for this dot size, the order of the four bands arising from the SO coupling of the hole states is 

. Based in the allowed values of the projection of the total angular 

momentum Fz (hole ± electron angular momentum) on the reference axis, the 1S3/2 and 2S3/2 

bands are made of 8 quasi degenerate fine structure states (Fz=±2,±1,0 and Fz=±1,0) split by 

crystal field and Coulomb intradot interactions, and the 1S1/2 and 2S1/2 of 4 ones (Fz=±1,0 and 

0). Among those the Fz =±2 states are dark. The crystal field splitting is taken to be 25 

meV(Wong and Scholes, 2011) which is about 5 times smaller and not resolved in 2DES 

spectroscopy. The 1S and 2S bands are also weakly coupled by Coulomb interband intradot 
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interactions. (Gattuso et al., 2020a). This coupling scheme leads to the Hamiltonian matrix 

shown in Figure S1A. 

 In the dimer, the levels of the two QD’s are coupled by interdot Coulomb interactions. 

The effective interdot coupling, , is quite large because the two dots making the 

dimer are quasi identical, therefore the electronic levels on each dot are quasi 

degenerate.(Collini et al., 2020; Gattuso et al., 2020a) Each single dot band is split into a low(L) 

and a high (H) band by the interdot Coulomb coupling, which leads to eight bands of 

eigenstates states for each dimer, 48 excited electronic states in total. The interdot coupling is 

larger between 1S states (≈ 65 meV) than between 2S (≈50 meV) because of confinement 

effects. Its strength is smaller than both the SO coupling strength and the band gap between the 

1S and the 2S states. The relative magnitude of the different couplings leads to the 8 band level 

structure of the eigenstates of the dimer sketched in Figure S1B. 

 
Figure S1 A. Structure of the Hamiltonian matrix in the zero order exciton basis. B: The 8 

bands of fine structure eigenstates for a dimer made of 2 QD of not quite the same size because 

they are drawn from an ensemble of QD’s of mean size 4.4 nm and 5% dispersion. The bands 

are L1S3/2, H1S3/2, L2S3/2, H2S3/2, L1S1/2, H1S1/2 and L2S1/2 and H2S1/2, L stands for ‘low’ and 

H for ‘high’.  

 

Since the two QDs that make each dimer are not identical, the states of each low and high 

branch in Figure S1B carry oscillator strength, with the states of the low band carrying less 

oscillator strength than those of the high one since these would be dark in the case of dimers 

made of identical dots.  

Vinter ΔE
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We diagonalize the matrix shown in Figure S1A for an ensemble of 2000 dimers, made of two 

dots of slightly different sizes. For each dimer, we obtain 48 excited eigenstates. At the level 

of the ensemble, each transition frequency between excited eigenstates and the GS and between 

two excited states is therefore characterized by a mean value and a width which leads to 

inhomogeneous broadening.(Gattuso et al., 2020b) Eigenstates belonging to same of the 8 

bands of states shown in Figure S1B have similar widths ranging from 17 meV for dimer 

eigenstates made of L1S3/2 states to 40 meV for eigenstates made of H2S1/2 states. The splitting 

between states of the low and high bands of 2S3/2 , L2S3/2 and H2S3/2, is of the order of 

magnitude of the widths due to size dispersion which does not allow to resolve these bands in 

the absorption spectrum shown in Figure S2.  The states of the L1S1/2  band are also not 

resolved. They carry very little oscillation strength and merge with the states of the H2S3/2 

band. 

 

 
Figure S2 : Dimer absorption spectrum (Full line) computed for an ensemble of 2000 dimers 

(diameter = 4.4 nm, with 5 % size dispersion), taking into account the inhomogeneous width 

of each of the 48 eigenstates due to size dispersion. The underlying stick spectrum correspond 

to the mean value and mean transition dipole from the GS of each state over the ensemble. The 

magnitude of the SO coupling and of the Coulomb interdot coupling is shown. 
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1.2 Computation of the 2D maps 

In the main text, we use electronic coherences between excited states of the dimer to emulate 

the quantum dynamics of two coupled harmonic oscillators. We have shown that these 

coherences can be probed by 2D electronic spectroscopy at room temperature in the solid state. 

The Hamiltonian model described in section S1.1 has been used to successfully characterize 

the electronic coherent response of QD of 4.4 nm diameter in solution(Collini et al., 2019) and 

of dimers of similar sizes in the solid state.(Collini et al., 2020)  

 The 2D maps reported in the main text are computed by third order perturbation theory 

in the impulsive limit for the duration of the three fs pulses involved in the rephasing phase 

matching direction. [ref mukamel, cho?] The phase matching directions are the macroscopic 

directions in which a signal is emitted after the interactions of the ensemble of dimers with 

three pulses separated by the time intervals , T and t. During each time interval, the 

populations in the eigenstates are stationary provided there is no population transfer due to 

vibronic coupling or induced by interactions with the environment, which is the case for the 

few dozens of fs time range considered here. We assume that the power of the laser pulse is 

weak enough that only one photon transitions are allowed from the GS. And that the carried 

frequency and duration of the pulse are such that all the excited states between 2 and 2.4 eV 

fall within the laser band width. As well documented and explained in the main text, there are 

8 Liouvillian paths (shown graphically as double-sided Feynman diagrams in Figure S3) for 

each pair of excited states i and j that can be reached by a one photon transition to this band of 

states from the GS. 

τ
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Figure S3. The 8 double sided Feynman diagrams that represents the 8 Liouvillian paths that 
contribute to the third order response in the rephasing phase matching direction for a pair of 
excited states reached by one photon transitions from the GS. (GSB (ground state bleaching, 
SE, stimulated emission). The three time intervals,  between the first and the second pulse, T 
between the second and the third, and t from the third to emission, are indicated. Full arrows 
represents transitions due to the impulsive interaction with the electric field of the pulse and 
the dashed arrow emission after the third pulse. 00, 0i, etc.. are the index of the elements of the 
density matrix of the system,  etc... . For more details, see refs.(Mukamel, 1995; 
Cho, 2009) The frequency address of each path on a 2D map is reported. 
 

The first pulse puts the systems in an excited state, creating a fast beating coherence with the 

GS during . After the interaction with the second pulse, during T, the systems can either be 

in the GS (GSB paths), in an excited state (SE paths) or in a coherence between two excited 

states. The interaction with the third pulse brings the system back in a coherence with the GS. 

The 2D maps are obtained by FT of the response along  and t for specific values of T. The 

abscissa and ordinate of the map therefore corresponds to the transition frequencies from the 

GS, inhomogeneously broadened by the size dispersion as the absorption spectrum. Among the 

8 paths shown in Figure S3, only the two coherence ones will exhibit a periodic time-

dependence with respect to T, which corresponds to the transition frequency, , between the 
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excited states i  and j. They appear at the addresses  and  on the map. 

Two time-independent GSB path also contribute to these addresses. The two other GSB paths 

and the two SE paths contribute to the diagonal.  

 The 2D maps are computed by summing these 8 paths for each pair of the 48 excited 

states characterized by a mean transition frequency and a width as explained in section 1.1.  A 

typical map with the addresses of the coherences is shown in figure S4.  Non linear 2DES 

spectroscopy allows resolving the LS3/2 and HS3/2 bands that cannot be resolved in linear 

absorption spectroscopy because the coherences between excited states contributing to the off 

diagonal peaks have different periods. Because of the size dispersion, coherences between 

given bands of excited have slightly different periods, which allows a more precise mapping 

of the vibrational periods of the system that is emulated. 

 

ω0i ,ω0 j( ) ω0 j ,ω0i( )
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Figure S4. 2D ES map in the rephasing phase matching direction computed for T=0. The 

addresses of the peaks corresponding to the mean values of the transition frequencies are 

indicated. 
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