Supplementary Table S1 PCR primers and an RNA adapter (5' to 3')
RACE PCR
poly(T)-adaptor primer GGCGACCCCTCGACTAGATGCGGCCGCTTTTTTTTTTTTTTTTTT
3'RACE, 1st PCR TTCCTCCCACATGGGAAAGC GGCGACCCCTCGACTAGATG
3'RACE, 2nd (nested) PCR TCCATCTATGGTGCAGAAGC TCGACTAGATGCGGCCGC
5'RACE, 1st PCR GGCGACCCCTCGACTAGATG CTCTGCTCATACACAACATCAC
5'RACE, 2nd (nested) PCR TCGACTAGATGCGGCCGC TGTCTCGATATGGAGCTGGA
5'RACE, 3rd (nested) PCR TCGACTAGATGCGGCCGC TGTCTCGATATGGAGCTGGA

RLM-RACE PCR		
RNA adapter	GCUGAUGGCGAUGAAUGAACACUGCGUUUGCUGGAUGAAA	
reverse transcription	TGTTTACATGGACCTTGCTAT	
1st PCR	GCTGATGGCGATGAATGAACACTG	TATCAGAAAGCAAGCCGTCC
2nd (nested) PCR	TGAACACTGCGTTTGCTGGATG	CGAATCCATTTGGTCATTCAT
35S-p.:pre-MIR828 construct (red letters indicate restriction sites)		
	GACTCTAGATTTTCCTCCCACATGGGAAAG	TTCGAGCTCTCTTCTTCCTCCCACAGAATG
stem-loop pulsed PCR		
reverse transcription	GTTGGCTCTGGTGCAGGGTCCGAGGTATTCGCACCAGAGCCAACTGGAAT	
end-point PCR	TCGCGTCTTGCTCAAATGAGT	GTGCAGGGTCCGAGGT
U6	CGGGGACATCCGATAAAATTGGAACG (U6af)	CGATTTGTGCGTGTCATCCTTGC (U6br)
qRT-PCR in tobacco (agroinfiltration)		
MYB12	CTCTTGGGAAACAGGTGGTC	CAGCTTCACCCTGTTTCTTCATCCTCAACC
NtDFR	TGAGTTTAAAGGCATCGATAAGGA	GAATTGAAACCCCATATCCGTC
iGUS	TGGATCCCTACAGGTTACAG	GAATATCTGCATCGGCGAAC
NtUBQ	AAGATTCAGGACAAGGAAGGCA	AGCTGCTTACCTGCGAAAATCA
Rluc	ATCATGGGATGAATGGCCTG	GCAACATGGTTTCCACGAAG
qRT-PCR in lilies		
Pri-MIR828	CCTCCAGCTCCATATCGAGAC	CTCTGCTCATACACAACATCAC
MYB12	GGGTGAAGCTGAACCAAAAA	CGAATCCATTTGGTCATTCAT
CHSa	GCGAAGCTGGGACTGCAGAAGG	CAAGACCACCGTTTCCACGGTT
CHSb	CTGAAGCTGGCGCTGGACAAAAAG	GGTAGTGATCGGAATGCTGTGAAGA
F3H	GGTGCCTTTGTCGTCAATCT	AACTTCGGTGGGCTTCTTCG
DFR	AATGGTTGCACCGGTGTGTT	GCACGTTCACAGTTCCAGCA
ANS	GGTGGTGACCAAGATGCTGT	CCAATGTGGACGAGAAGGGA
ACTIN	GGAGTGAGCCACACAGTTCC	ATAGCTCTTCTCCACAGAGG
MYB12 mRNA-cleavage products (Figure 5)		

Supplementary Table S2 Putative targets of miR828 estimated using psRNATarget: A Plant Small RNA Target Analysis Server1. R2R3-MYB genes are shown in red.

Accession \# ${ }^{2}$	Target annotation	Blast top hit	Expectation ${ }^{3}$ UPE 4	Target aligned fragment	Inhibition
c24386_g1_i2	MYB15like (subgroup 6 R2R3-MYB)	LC218141.1 [Lilium hybrid division I (Asiatic hybrid lilies)]	2	9.996 UGGAACUCUCAUUUGAGCAAGA	Cleavage
c22900_g1_i4	MYB12 (subgroup 6 R2R3-MYB)	AB534586.1 [Lilium hybrid division I (Asiatic hybrid lilies)]	2.5	11.116 UGGAAUUCUCACUUGAGCAAGA	Translation
c20211_g1_i1	calcineurin-binding protein 1 -like	XP_017701940.1 [Phoenix dactylifera]	2.5	21.912 CACGAUGGUCAUUUGAGCAAGG	Cleavage
c24386_g2_i1	MYB16 (subgroup 6 R2R3-MYB)	LC218139.1 [Lilium hybrid division I (Asiatic hybrid lilies)]	3	17.361 UGGAACGCUCACUUGAGCAAGA	Translation
c28082_g1_i1	ADP-ribosylation factor GTPase-activating protein	XP_010926864.1 [Elaeis guineensis]	3	17.961 CAAGAUCUUCAUUUGAGCAAGC	Cleavage
c29023_g1_i1	ATP-dependent DNA helicase homolog RECG, chloroplastic	XP_010936813.1 [Elaeis guineensis]	3.5	18.032 UCGAACAUUUAGUUGAGCAAGA	Translation
c28053_g1_i1	putrescine-binding periplasmic protein-like protein	NP_174426.2 [Arabidopsis thaliana]	4	14.292 UGGAAGGCUUAUUUGUGCAGGA	Cleavage
c12438_g1_i3	myb-related protein Zm1-like (subgroup 2 R2R3-MYB)	XP_020251095.1 [Asparagus officinalis]	4	20.706 UGGAAUACCCAUUUGAAGAAGA	Cleavage
	MYB19S (subgroup 6 R2R3-MYB) ${ }^{5}$	LC519097 [Lilium hybrid division I (Asiatic hybrid lilies)]	4	9.863 UGGAAUUCACACUUGAGUAAGA	Translation
c30057_g1_i5	cullin-associated NEDD8-dissociated protein-like	XP_008795267.1 [Phoenix dactylifera]	4	14.624 CUGAAUGCACAUUUGGGGGAGA	Cleavage
c27842_g1_i1	nodulin homeobox-like	XP_008805054.1 [Phoenix dactylifera]	4	15.802 CCGAAAGUUCAUUUGGCCAAGA	Cleavage
c28282_g1_i1	hypothetical protein	RWR81552.1 [Cinnamomum micranthum f. kanehirae]	4	20.989 CCUUAUGCUCAUGUGAGCAAGC	Translation
c30149_g1_i1	E3 ubiquitin ligase PQT3-like	XP_010917745.1 [Elaeis guineensis]	4	14.679 UGCAAGAUCCAUUUGAGCAACA	Cleavage
c23173_g1_i1	fumarylacetoacetase	XP_008776647.1 [Phoenix dactylifera]	4	17.310 GACAAUGCUAAUUUGAGGGAGA	Cleavage
c29559_g1_i1	uncharacterized protein	XP_010912273.1 [Elaeis guineensis]	4	23.804 UAUAAUAUUCAUAUGAGGAGGA	Translation

${ }^{1}$ http://plantgrn.noble.org/psRNATarget/
${ }^{2}$ Lollypop tepal transcriptome (Suzuki et al. 2016)
${ }^{3}$ Expectations lower than 4 are shown
${ }^{4}$ UPE: Target accessibility-maximum energy to unpair the target site (Less energy means more possibility that microRNA is able to cleave target mRNA
${ }^{5}$ Yamagishi, 2020b

Supplementary Table S3 Overview of the small RNA-seq

Triming summary

| Sample |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| Name |n

Mapping summary

Mapping summary			
Sample Name	$\#$ Input Reads	\#otal Mapped Reads	\% of Total Mapped Reads
Lower half	$18,887,232$	874	0.0046
Upper half	$18,997,636$	75	0.0004

miR828
pri-MIR828-1
pri-MIR828-2 GAGCATCATCTCCATAATTTTCCTCCCACATGGGAAAGCCTCTTGCTCAAATGAGTATTCCATCTATG

Supplementary Figure S1 Nucleotide sequence alignment of pri-MIR828 in Lollypop. Guide (miR828) and passenger (miR828*) strand sequences are shown in red background.

Probability >= 99\%
99\% > Probability >= 95\%
95\% > Probability >= 90%
$90 \%>$ Probability >= 80%
80\% > Probability >= 70%
70% > Probability >=60\%
$60 \%>$ Probability $>=50 \%$
50\% > Probability
ENERGY $=-213.0$

TGAACACTGCGTTTGCTGGATGAAATTGAGCAAGAGAAAAGTGAATGTCGAACA... TGAACACTGCGTTTGCTGGATGAAATTGAGCAAGAGAAAAGTGAATGTCGAACA... TGAACACTGCGTTTGCTGGATGAAATTGAGCAAGAGAAAAGTGAATGTCGAACA... TGAACACTGCGTTTGCTGGATGAAATTGAGCAAGAGAAAAGTGAATGTCGAACA... TGAACACTGCGTTTGCTGGATGAAATTGAGCAAGAGAAAAGTGAATGTCGAACA... TGAACACTGCGTTTGCTGGATGAAATTGAGCAAGAGAAAAGTGAATGTCGAACA... TGAACACTGCGTTTGCTGGATGAAATTGAGCAAGAGAAAAGTGAATGTCGAACA... TGAACACTGCGTTTGCTGGATGAAATTGAGCAAGAGAAAAGTGAATGTCGAACA... TGAACACTGCGTTTGCTGGATGAAATTGAGCAAGAGAAAAGTGAATGTCGAACA...

B
TGAACACTGCGTTTGCTGGATGAAA-----TTGAGCAAGAGAAAAGTGAATGTCGAACA... TGAACACTGCGTTTGCTGGATGAAA-----TTGAGCAAGAGAAAAGTGAATGTCGAACA... TGAACACTGCGTTTGCTGGATGAAA-----TTGAGCAAGAGAAAAGTGAATGTCGAACA... TGAACACTGCGTTTGCTGGATGAAA--------AGCAAGAGAAAAGTGAATGTCGAACA… TGAACACTGCGTTTGCTGGATGAAA-----TTGAGCAAGAGAAAAGTGAATGTCGAACA... TGAACACTGCGTTTGCTGGATGAAACTCACTTGAGCAAGAGAAAAGTGAATGTCGAACA... TGAACACTGCGTTTGCTGGATGAAA-----TTGGGCAAGAGAAAAGTGAATGTCGAACA... TGAACACTGCGTTTGCTGGATGAAA---------AGCAAGAGAAAAGTGAATGTCGAACA...

C

TGAACACTGCGTTTGCTGGATGAAATTGAGCAAGAGAAAAGTGAATGTCGAACA... TGAACACTGCGTTTGCTGGATGAAATTGAGCAAGAGAAAAGTGAATGTCGAACA... TGAACACTGCGTTTGCTGGATGAAATTGAGCAAGAGAAAAGTGAATGTCGAACA... TGAACACTGCGTTTGCTGGATGAAATTGAGCAAGAGAAAAGTGAATGTCGAACA... TGAACACTGCGTTTGCTGGATGAAATTGAGCAAGAGAAAAGTGAATGTCGAACA... TGAACACTGCGTTTGCTGGATGAAATTGAGCAAGAGAAAAGTGAATGTCGAACA... TGAACACTGCGTTTGCTGGATGAAA---AGCAAGAGAAAAGTGAATGTCGAACA... TGAACACTGCGTTTGCTGGATGAAATTGAGCAAGAGAAAAGTGAATGTCGAACA... TGAACACTGCGTTTGCTGGATGAAATTGAGCAAGAGAAAAGTGAATGTCGAACA... TGAACACTGCGTTTGCTGGATGAAATTGAGCAAGAGAAAAGTGAATGTCGAACA...

Supplementary Figure S3 Sequences of the RLM-RACE PCR products of MYB12. Nucleotides corresponding to the RNA adapter are shown in blue letters and those corresponding to MYB12 sequences are shown in black letters. A: RNA was isolated from tobacco leaves infiltrated with the 35S-p::MIR828 and 35S-p::MYB12 constructs. B: RNA was derived from tobacco leaves infiltrated with the 35S-p::MIR828, 35S$\mathrm{p}::$ MYB12 and other constructs. C: RNA was isolated from the lower halves of Lollypop tepals at stage 4. The results shown in A, B, and C are summarized in Figure $2 B, 2 D$, and $3 B$, respectively.

Supplementary Figure S4 Putative miR828 target sites in subgroup 5 members (Phalaenopsis) and subgroup 6 members (other species) of R2R3-MYB sequences regulating anthocyanin biosynthesis in monocots and eudicots. Number of mismatched nucleotides is shown in parentheses. Expectation, UPE, and Inhibition were estimated using "psRNATarget: A Plant Small RNA Target Analysis Server" (see Supplementary Table S2). Expectations lower than 5 are shown. The R3 repeat region is represented by a blue bar.
Accession numbers (in parentheses) are AaMYB2 (KU726561) in Anthurium andraeanum, Virescens (EgVIR, KJ789862) in Elaeis guineensis, AcMYB1 (KX785130) in Allium cepa, PeMYB12 (AIS35929), PeMYB2 (AIS35919), and PeMYB11 (AIS35928) in Phalaenopsis equestris, AtPAP1 (NM_104541), AtPAP2 (NM_105310), AtMYB113 (NM_105308), and AtMYB114 (NM_105309) in Arabidopsis thaliana, PhAN2 (AF146702), PhAN4 (HQ428105), PhDPL (HQ428109), and PhPHZ (HQ428103) in Petunia hybrida, AmROSEA1 (DQ275529) in Antirrhinum majus, MdMYB10a (DQ267896) in Malus \times domestica, VIMYBA1-1 (AB073010) and VIMYBB1-1 (AB073016) in Vitis labrusca \times V. vinifera, and SmMYB36 (KF059390) in Salvia miltiorrhiza.

