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Web Appendix: Additional Details Regarding Model

Specification

This appendix provides additional details regarding the model outlined in Section 2 of the

manuscript. The methodology was originally developed in Self et al. (2018), and a complete

description of the methodology, model fitting procedure, and related simulation studies may

be found in that work. For the purposes of convenience and completeness, we here provide

additional details regarding the specific form of the model outlined in Section 2 of the

manuscript.

1. Modeling Methods

Recall that yst denotes the number of cases (e.g., positive tests) observed in nst tests taken

in county s at time t, for s = 1, . . . , S and t = 1, . . . , T . Set Y s = (ys1, . . . , ysT )′, Y =

(Y ′1, . . . ,Y
′
S)′ ∈ RST , ns = (ns1, . . . , nsT )′, and n = (n′1, . . . ,n

′
S)′ ∈ NST . Following (Self

et al., 2018), let Zstq and Xstp, for q = 1, . . . , Q and p = 1, . . . , P , denote covariates associated

with location s at time t. The Zstq are covariates whose effects are constant over the study

area, while Xstp are covariates whose associated effects vary by region. In our model, the set

of covariates whose effects are constant over space consists only of a global intercept term

(i.e., Q = 1 and Zst1 = 1 for all s and t). The set of covariates whose effects vary by region

consists only of the spatially varying regional trend (i.e. P = 1 and Xst1 = t/T for all s and
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t). We assume that yst|nst, pst ∼ Binomial(nst, pst), where

ηst := g−1(pst) = Z ′stδ +X ′stβ(`s) + ξst; s = 1, . . . , S; t = 1, . . . , T. (1)

In the above expression, g : R→ (0, 1) is the logistic link function relating the linear predictor

ηst to the prevalence pst, Zst = (1, Zst1, . . . , ZstQ)′ ∈ RQ+1, Xst = (Xst1, . . . , XstP )′ ∈ RP ,

δ = (δ0, . . . , δQ)′ are global regression coefficients, β(·) = (β1(·), . . . , βP (·))′ are spatially

varying regression coefficients, `s = (`s1, `s2)
′ is a vector of spatial coordinates (e.g., latitude

and longitude) that identifies the centroid of region s, and ξst is a spatio-temporal random

effect. In the manuscript, we use β(s) to denote β(`s). Gaussian predictive processes (GPPs)

are used to model the β(·) parameters.

A GPP employs a “parent” Gaussian process on a set of “knots” placed throughout

the study area and interpolates to points of interest via kriging. Let {`∗1, . . . , `∗S∗p} denote

a set of “knot” locations with S∗p � S. Define β∗p = (βp(`
∗
1), . . . , βp(`

∗
S∗p

))′ and note that

β∗p|σ2
p,θp

ind∼ N(0,C∗p), for all p, where C∗p = σ2
pR
∗
p and (R∗p)ss′ = ρp(`

∗
s, `
∗
s′ ;θp). The

GPP replaces βp with β̃p := E(βp|β∗p;θp) = R̃
∗
p(R

∗
p)
−1β∗p, where R̃∗p is an S × S∗p matrix

whose (s, s′)th element is ρp(`s, `
∗
s′ ;θp). For our model, we took ρp(`s, `

∗
s′ ;θp) = θ

d2
s,s′

1 , where

θ1 ∈ (0, 1) and ds,s′ denotes the euclidean distance between locations s and s′. We selected

100 knot locations via K-means clustering with S∗p clusters; i.e., using K-means clustering,

the S counties are partitioned into S∗p clusters based on their locations `s. The knot locations

are taken as the centroids of the S∗p clusters. Web Figure 6 displays the knot locations used

in our analysis.

The likelihood is

f(Y |η) ∝
T∏
t=1

S∏
s=1

g(ηst)
Yst{1− g(ηst)}nst−Yst . (2)

where η = (η11, . . . , η1T , η21, . . . , ηST )′. The data augmentation approach of Polson et al.

(2013) is used to facilitate the MCMC sampling routine. This approach allows us to express
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(2) as

f(Y |η) ∝
T∏
t=1

S∏
s=1

exp(κstηst)

∫ ∞
0

exp(−ψstη2st/2)p(ψst|nst, 0)dψst

∝
T∏
t=1

S∏
s=1

∫ ∞
0

fY,ψ(Yst, ψst | ηst)dψst,

where p(· | b, 0) is the probability density function of a Pólya-Gamma random variable with

parameters b and 0, κst = Yst − nst/2 and fY,ψ is the joint density of (Yst, ψst). Treating the

ψst as latent random variables to be sampled via MCMC, we obtain

fY ,ψ(Y,ψ | η) ∝ exp(−η′Dψη/2 + κ′η)
T∏
t=1

S∏
s=1

p(ψst|nst, 0),

whereψ = (ψ11, . . . , ψ1T , ψ21, . . . , ψST )′,Dψ = diag(ψ), and κ = (κ11, . . . , κ1T , κ21, . . . , κST )′.

Since data are not reported at all county-month pairs, let R be the set of all ordered pairs

(s, t) for which tests are observed. The augmented likelihood is

f(Y(R),ψ(R) | η(R)) ∝ exp(−η(R)′Dψ(R)η(R)/2 + κ(R)′η(R))
∏

(s,t)∈R

p(ψst|nst, 0),

where η(R) = Z(R)δ+X(R)b̃+I(R)ξ and the convention that A(R) is the matrix formed

by retaining the rows of A whose indices are in R is used. Here, Z = (Z ′1, . . . ,Z
′
S)′ ∈

RST×(Q+1) with Zs = (Zs1, . . . ,ZsT )′. Similarly, X =
⊕S

s=1Xs ∈ RST×SP with Xs =

(Xs1, . . . ,XsT )′, I is the identity matrix, and b̃ = (β̃
′
(`1), . . . , β̃

′
(`S))′ ∈ RSP . Since ξ ∈

RST is the vector of spatial random effects over all locations within the study region for all

time points, the full conditional for ξ is well-defined provided that the prior on ξ is proper.

This joint density representation permits the imputation of any missing effects via posterior

realizations.
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The prior distributions for all other parameters are given below:

σ2
p

indep.∼ Inverse Gamma(2, 2), p = 1, . . . , P ;

θp
i.i.d.∼ Uniform(0, 1), p = 1, . . . , P ;

δ ∼ N(0, 1000I), σ2
δ > 0;

τ 2 ∼ Inverse Gamma(2, 2)

ω ∼ Beta(900, 100)

ζ ∼ Truncated-Normal(0, 10,−1, 1),

(3)

where I denotes a Q×Q identity matrix.

Web figures 4 and 5 displays the prior distribution (red) and posterior MCMC sample

from each model fit for the hyperparameters.

2. Web Figures

Web Figure 1: Counties for which the 95% credible interval for the regional trends for
Anaplasma spp (A) and B. burgdorferi (B) does not contain 0.
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Regional Trend:
Lower Bound of
95% Credible
Interval

-3.87 - -1.73
-1.72 - -1.18
-1.17 - -0.82
-0.81 - -0.48
-0.47 - 0.00
0.01 - 0.53
0.54 - 1.31
1.32 - 2.20
2.21 - 3.53

Regional Trend:
Upper Bound of
95% Credible
Interval

-2.57 - -1.73
-1.72 - -1.18
-1.17 - -0.82
-0.81 - -0.48
-0.47 - 0.00
0.01 - 0.53
0.54 - 1.31
1.32 - 2.20
2.21 - 3.70

Regional Trend:
Lower Bound of
95% Credible
Interval

-3.77 - -1.80
-1.79 - -1.30
-1.29 - -0.88
-0.87 - -0.42
-0.41 - 0.00
0.01 - 0.74
0.75 - 1.41
1.42 - 2.14
2.15 - 3.20

Regional Trend:
Upper Bound of
95% Credible
Interval

-1.97 - -1.80
-1.79 - -1.30
-1.29 - -0.88
-0.87 - -0.42
-0.41 - 0.00
0.01 - 0.74
0.75 - 1.41
1.42 - 2.14
2.15 - 3.50

Web Figure 2: Lower (left) and upper (right) bounds of 95% credible intervals for the regional
Anaplasma spp. (top) and B. burgdorferi (bottom) trends.

Local Trend:
Lower Bound of
95% Credible
Interval

-4.62 - -1.80
-1.79 - -1.21
-1.20 - -0.78
-0.77 - -0.45
-0.44 - 0.00
0.01 - 0.21
0.22 - 0.71
0.72 - 1.50
1.51 - 3.05

Local Trend:
Upper Bound of
95% Credible
Interval

-3.61 - -1.80
-1.79 - -1.21
-1.20 - -0.78
-0.77 - -0.45
-0.44 - 0.00
0.01 - 0.21
0.22 - 0.71
0.72 - 1.50
1.51 - 3.90

Local Trend:
Lower Bound of
95% Credible
Interval

-3.88 - -1.25
-1.24 - -0.79
-0.78 - -0.44
-0.43 - -0.12
-0.11 - 0.00
0.01 - 0.60
0.61 - 1.20
1.21 - 2.02
2.03 - 3.05

Local Trend:
Upper Bound of
95% Credible
Interval

-2.97 - -1.25
-1.24 - -0.79
-0.78 - -0.45
-0.44 - -0.12
-0.11 - 0.00
0.01 - 0.60
0.61 - 1.20
1.21 - 2.02
2.03 - 4.25

Web Figure 3: Lower (left) and upper (right) bounds of 95% credible intervals for the local
Anaplasma spp. (top) and B. burgdorferi (bottom) trends.
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Web Figure 4: The figure displays the prior distribution (red) and posterior MCMC sample
of the hyperparameters from the B. burgdorferi model. The plots corresponde to σ2

1 (top
left), θ1 (top right), τ 2 (middle left), ω (middle right) and ζ (bottom).
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Web Figure 5: The figure displays the prior distribution (red) and posterior MCMC sample
of the hyperparameters from the Anaplasma spp. model. The plots corresponds to σ2

1 (top
left), θ1 (top right), τ 2 (middle left), ω (middle right) and ζ (bottom).
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Web Figure 6: The figure displays the 100 knot locations used for the Gaussian predictive
process.
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