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1 Description of the human experiments

The sole purpose of the experiments was to get a quantitative basis for the variations of the simulated move-
ments. These variations allowed us to statistically test the main hypothesis of this paper: that there is a
difference in morphological computation between different hierarchy levels.

1.1 Experimental setup: general description

A quantitative movement analysis by a VICON motion capture system with 12 cameras was used to quantify
the participants’ movements. The system captures three-dimensional movement trajectories of the subjects.
The spatial resolution of the system was approximately 1 mm. All trials were recorded at a sampling rate
of 120 Hz, using 29 retro-reflecting markers that were positioned based on the Heidelberger Upper Extremity
(HUX) model (Rettig et al., 2009).
The HUX model consists of seven segments and determines the individual’s joint center of the shoulder and

elbow joint with one static and three dynamic calibrations per subject. The calibration movements include
shoulder abduction and adduction, shoulder anteversion and retroversion (both performed with zero elbow
flexion) and elbow flexion and extension, all with the participant’s maximal range of motion. Additional to
the HUX marker set, further markers were added to evaluate the finger position (point-to-point movements)
and to the swing rod (oscillating movements). All markers are listed in Table 1.

Marker Anatomical Position

HUX model:
HEAD central forhead
R/L MAS above mastoids (right/left)
CLAV jugular notch
C7 thoracic vertebrae cervicalis 7
T10 thoracic vertebrae thoracalis 10
SACR mid-way between posteriorsuperior iliac spines
R/L ASI anterior superior iliac spines (right/left)
R/L SHO acromio-clavicular joint (right/left)
R/L HUMS tuberositas deltoidea (right/left)
R/L ELB twin-marker ulna 2 cm distally to the olecranon (right/left)
R/L ELBW twin-marker ulna 2 cm distally to the olecranon (right/left)
R/L ULN processus styloideus ulnae (right/left)
R/L RAD processus styloideus radii (right/left)
additional markers:
R 1PD 1st distal interphalangeal
R 2MCP 2nd articulationes metacarpophalangeae
R 2PD 2nd phalanx distalis
R 5MCP 5th articulationes metacarpophalangeae

Table 1: Marker placement according to the HUX model with additional markers to determine the finger
position.
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1.2 Experimental setup: Point-to-point movements
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Figure 1: Sketch of the experimental setup. Using a motion capture system, elbow and shoulder angles of fast
goal-directed pointing movements have been captured.

For the point-to-point movements, the participant was seated in front of a vertical canvas at a distance of
50 % of their arm length (see Figure 1). Four different targets appeared randomly on a vertical line on the
canvas and the subjects were instructed to follow the targets fast, but precisely with their dominant hand.
The vertical distance between the target positions varied between approximately 15 cm for small movements
and 45 cm for large movements (distance between circle centers).

1.3 Experimental setup: Oscillation movements

For the oscillation movements, the participant was standing upright, holding the swing rod in their dominant
hand and instructed to get the swing rod in resonance. Here, we additionally recorded the muscle surface
electromyograms (EMG) of the m.bisceps and m.triceps muscle.

1.4 Experimental results: Point-to-point movements

The point-to-point movement of interest was repeated seven times. We extracted the different initial and
target angles, as well as one intermittent posture which represents the point of maximal elbow angle (Table 2).
These joint configurations were assumed to represent the equilibrium points for the neuronal controller in the
simulation. See main manuscript for more details. The resulting trajectories in comparison to the experimental
trajectories are shown in Figure 2.

initial angle intermittant angle target angle
elbow shoulder elbow shoulder elbow shoulder

66,86° 76,03° 83,30° 76,03° 72,02° 39,91°
62,73° 78,20° 78,54° 78,26° 69,08° 40,52°
63,08° 76,44° 78,99° 76,45° 69,56° 36,36°
61,06° 76,44° 76,61° 76,45° 67,92° 37,28°
60,47° 74,67° 77,53° 74,67° 70,39° 34,88°
61,53° 74,42° 80,79° 74,43° 68,77° 33,94°
60,18° 73,26° 76,74° 73,26° 67,79° 33,75°

Table 2: Equilibrium point angles extracted from the experimental data. All angles are given in degrees.
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Figure 2: Variability of experimental data (black) and simulated data (red). These variations are the source
of the error bar in the main manuscript.

1.5 Experimental results: Oscillation movements

The experimental data of the joint angles and EMG was analyzed with a fast Fourier analysis (Figure 3). This
data indicates that the range of oscillation frequencies occurring in the movement is about ±0.2Hz. This was
used as the variance of randomly selected frequencies to introduce a "natural" variation in the movements in
the simulation.
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Figure 3: Fourier transformation of the experimental data on a swing rod exercise. Shown are the frequency
spectra for two muscles (EMG of m. biceps and m.triceps) as well as the two joints (shoulder and
elbow). This data indicates that the range of oscillation frequencies occurring in the movement
is about ±0.2Hz. This was used as the variance of randomly selected frequencies to introduce a
"natural" variation into the movements in the simulation.

4



2 Supplementary simulation results point-to-point movements

We further quantified the other three pointing movements, which have quite a different amplitude (and di-
rection) than the point-to-point movement reported in the main manuscript. Despite these differences in
movement, the main trend of the results is similar: morphological computation is highest for the highest level
in the control hierarchy.
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Figure 4: Morphological computation MCW on different hierarchy levels for an exemplary point-to-point move-
ment (2 → 3). Morphological computation was evaluated using (a) selected (MCsel

W ) and (b) accu-
mulated hierarchy levels (MCacc

W ). Note that a logarithmic scale is used for the y-axis. The limit of
the y-axis is set to the maximum MC value that would result from having a constant signal as input.
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Figure 5: Morphological computation MCW on different hierarchy levels for an exemplary point-to-point move-
ment (4 → 1). Morphological computation was evaluated using (a) selected (MCsel

W ) and (b) accu-
mulated hierarchy levels (MCacc

W ). Note that a logarithmic scale is used for the y-axis. The limit of
the y-axis is set to the maximum MC value that would result from having a constant signal as input.
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Figure 6: Morphological computation MCW on different hierarchy levels for an exemplary point-to-point move-
ment (4 → 3). Morphological computation was evaluated using (a) selected (MCsel

W ) and (b) accu-
mulated hierarchy levels (MCacc

W ). Note that a logarithmic scale is used for the y-axis. The limit of
the y-axis is set to the maximum MC value that would result from having a constant signal as input.
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3 More details on quantifying morphological computation

This section discusses one concept of quantifying morphological computation. For a full discussion, the reader
is referred to (Ghazi-Zahedi, 2019b).

3.1 Causal Model of the Sensorimotor Loop

We assume that there is a canonical way to separate a cognitive system into four parts, namely brain, sensors,
actuators, and body. We are fully aware that the system–environment separation is a very difficult and yet
unsolved question for biological systems (see e.g., (von Förster, 2003) for a discussion). In fact, one question of
this paper is to investigate different levels of hierarchy with respect to quantifying morphological computation.
In our concept of the sensorimotor loop, which is derived from Pfeifer et al. (2007), the brain or controller

sends signals to the actuators that influence the environment (see Figure 7). We prefer the notion of the
system’s Umwelt von Uexkuell (1957); Clark (1996); Ay and Löhr (2015), which is the part of the system’s
environment that can be affected by the system and itself affects the system. The state of the actuators and
the Umwelt are not directly accessible to the cognitive system, but the loop is closed as information about
both the Umwelt and the actuators are provided to the controller by the system’s sensors. In addition to
this general concept, which is widely used in the embodied artificial intelligence community (see e.g., (Pfeifer
et al., 2007)), we introduce the notion of world to the sensorimotor loop, that is, the system’s morphology
and the system’s Umwelt. This differentiation between body and world is analogous to the agent–environment
distinction made in the context of reinforcement learning Sutton and Barto (1998), where the environment is
defined as everything that cannot be changed arbitrarily by the agent.

 Cognitive System

Motor
signal 

Sensory
feedback 

 World

Internal stimulation

Movement
and feedback 

External
stimulation

Sensors  Actuators

Controller

Environment

W

S A

W'
↵

⇡
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Figure 7: Sensorimotor Loop. Left-hand side: schematics of the sensorimotor loop (redrawn from Pfeifer et al.
(2007)), Right-hand side: causal diagram of a reactive system.

Arm movements, and actually most behaviours that are interesting in the context of morphological com-
putation, can be modelled sufficiently as reactive behaviours. Hence, for the remainder of this work, we will
omit the controller and assume that the sensors are directly connected to the actuators. For a discussion of
the causal diagram for non-reactive systems, the reader is referred to Ay and Zahedi (2014). Quantifications
of morphological computation for non-reactive systems are discussed in Zahedi and Ay (2013).
The causal diagram of the sensorimotor loop is shown on the right-hand side of Figure 7. The random

variables A, S, W , and W ′ refer to actuator signals, sensor signals, and the current and next world state.
Directed edges reflect causal dependencies between the random variables. The random variables S and A are
not to be mistaken with the sensors and actuators. The variable S is the output of the sensors, which is
available to the controller or brain, and the action A is the input that the actuators take. Consider an artificial
robotic system as an example. Then the sensor state S could be the pixel matrix delivered by a camera sensor
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and the action A could be a numerical value that is taken by a motor controller and converted in currents to
drive a motor.
We use capital letters (A, W , . . . ) to denote random variables, non-capital letters (a, w, . . . ) to denote

a specific value that a random variable can take, and calligraphic letters (A, W, . . . ) to denote the alphabet
for the random variables. This means that at is the specific value that the random variable A can take at
time t ∈ N, and it is from the set at ∈ A. Greek letters refer to generative kernels, i.e., kernels that describe
an actual underlying mechanism or a causal relation between two random variables. In the causal graphs
throughout this paper, these kernels are represented by direct connections between corresponding nodes. This
notation is used to distinguish generative kernels from others, such as the conditional probability of a given
that w was previously seen, denoted by p(a|w), which can be calculated or sampled but that does not reflect
a direct causal relation between the two random variables A and W (see Figure 7).
We abbreviate the random variables for better comprehension in the remainder of this work, as all measures

consider random variables of consecutive time indices. Therefore, we use the following notation. Random
variables without any time index refer to time index t and hyphened variables to time index t + 1. The two
variables W and W ′ refer to Wt and Wt+1, respectively.

3.2 Quantifying Morphological Computation

We can now restate the two original concepts of quantifying morphological computation Zahedi and Ay (2013);
Ghazi-Zahedi (2019b) (see Figure 8).
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W' W
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Figure 8: Visualisation of the two concepts MCA and MCW. Left-hand side: causal diagram for a reactive
system. Centre: causal diagram assuming no effect of the action A on the next world state W ′.
Right-hand side: causal diagram assuming no effect of the previous world state W on the next world
state W ′.

The basis for both original concepts MCA and MCW is the world dynamics kernel α(w′|w, a), which describes
how the next world states W ′ depends on the current world state W and the current action A (see Figure 7,
right-hand side, and Figure 8, left-hand side, respectively). For the first concept MCA, let us assume that
there is no dependence of the next world state W ′ on the current action A. In this case, the world dynamics
kernel α(w′|w, a) reduces to α̂(w′|w) (which is given by α̂(w′|w) =

∑
a
p(w′,w,a)/p(w), see also Figure 8, centre).

As a result, we would state that we have maximal morphological computation, as the system’s behaviour is
not controlled by the brain at all. An example of such a system is the Passive Dynamic Walker (McGeer, 1990;
Collins et al., 2005). We can measure how much the observed behaviour differs from this assumption with the
Kullback-Leibler divergence (Cover and Thomas, 2006). This leads to the following formalisation:

MCA :=
∑

w′,w,a

p(w′, w, a) log2

α(w′|w, a)

α̂(w′|w)
(1)

= I(W ′;A|W ) (2)

Unfortunately, Equation (1) is zero for maximal morphological computation, which is why we initially chose
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to normalise and invert it, leading to the following definition:

MCA := 1− 1

log2 |W|
∑

w′,w,a

p(w′, w, a) log2

α(w′|w, a)

α̂(w′|w)
(3)

The second concept, MCW starts with the opposite assumption, namely, that the current world state W
does not have any influence on the next world state W ′ (see Figure 8, right-hand side). In this case, the world
dynamics kernel α(w′|w, a) reduces to α̃(w′|a) (which is given by α̃(w′|a) =

∑
w

p(w′,w,a)/p(a), see also Figure 8)
and analogously to the following definition for MCW:

MCW :=
∑

w′,w,a

p(w′, w, a) log2

α(w′|w, a)

α̃(w′|a)
(4)

= I(W ′;W |A) (5)

The relation of the measures to transfer entropy Schreiber (2000); Bossomaier et al. (2016) and the infor-
mation bottleneck Tishby et al. (1999) are discussed in Zahedi and Ay (2013); Ghazi-Zahedi (2019b).
Next, we briefly describe, how the quantification can be calculated from data.

3.3 Estimating Quantifications of Morphological Computation

We will explain how to estimate information-theoretic quantities based on an estimation of entropy. A more
detailed discussion about the topic can be found in (Paninski, 2003) and a more detailed discussion with
respect to quantifying morphological intelligence can be found in (Ghazi-Zahedi, 2019b).
The general concepts will be discussed along the example of estimation entropy:

Ĥ(X) = −
∫
x

µ(x) lnµ(x)dx. (6)

Estimating the entropy H(X) requires knowledge about the underlying probability distribution µ(x). In real-
world scenarios, µ(x) cannot be accessed directly, but only via observations xi. The task is to estimate p(xi)
such that the estimated entropy H(X) = −

∑
x p(x) ln p(x) approximates Ĥ(X). The most common technique

is known as binning of frequency estimation. This method uses a discrimination of the state space X and
estimates p(xi) by the number of samples that fall into each bin. Hence, the entropy of X is given by:

H(X) = −
∑
x

ci
N

ln
ci
N
, (7)

where ci are the number of samples that fall into bin i and N is the total number of samples.
The second method is only discussed conceptually. For a full discussion, please read (Ghazi-Zahedi, 2019b;

Kraskov et al., 2004; Frenzel and Pompe, 2007). The general idea is to estimate p(xi) without the intermediate
step of binning the state space. Instead, the probability density is estimated by the distance to the k-nearest
neighbour of each sample xi. The distance to the k-nearest neighbour is small if the sample xi is an area of
the state space that has a high concentration of samples, and hence, the probability mass for xi should be
large. The distance to the k-nearest neighbour is large if the sample xi is in a sparsly populated area of the
state space. These assumptions are used to shape locally constant or Gaussian functions around each sample
xi.
Both methods can be used in gomi (Ghazi-Zahedi, 2019a) to estimate MCW and MCA.
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4 The arm model Arm26
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Figure 9: (a) Visualization of the musculoskeletal model of the arm and the definition of the shoulder angle
ψ(t) and the elbow angle ϕ(t) and (b) Structure of the arm model: the motor command u(t) is
fed into the model of the activation dynamics of muscles which relates the neuronal stimulation to
muscular activity a(t) that drives the muscle model. The muscles produce forces F(t) that act on
the skeletal system resulting in a simulated movement q(t) = [ϕ(t), ψ(t)] of the arm.

The neuro-musculoskeletal model Arm26 consists of a musculoskeletal model of the arm with two de-
grees of freedom actuated by six muscles and a controller. The model is implemented using Matlab®

R2018a/Simulink® with the Simscape Multibody™environment. For a better overview, the implementation
of the model is divided into three parts: the mechanical part (representing the bone structure and the muscle
routing), the actuation of this mechanical part (muscle-tendon structures) and the controller (nervous system)
which provides the input to the actuation part.

4.1 Musculoskeletal model of the arm: Mechanics and Actuation

The musculoskeletal model Arm26 of the human arm uses the same geometry and muscle parameters as the
simulation model described in Driess et al. (2018) which is based on Bayer et al. (2017). It consists of two rigid
bodies (lower and upper arm) that are connected via two one-degree-of-freedom revolute joints that represent
the shoulder and elbow joint. This multibody system is actuated by six muscle-tendon units (MTU), four
monoarticular and two biarticular muscles (see Figure 9a). The muscles are modeled as lumped muscles, i.e.
they represent a multitude of anatomical muscles:

1. Monarticular Elbow Flexor (MEF) (short: Elbow Flexor (EF)):
m. brachioradialis, m. brachialis, m. pronator teres, m. extensor carpi radialis

2. Monarticular Elbow Extensor (MEE) (short: Elbow Extensor (EE)):
m. triceps lateralis, m.triceps medialis, m. an-coneus, m. extensor carpi ulnaris
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3. Biarticular Elbow Flexor Shoulder Anteversion (BEFSA) (short: Biarticular Flexor (BF)):
m. biceps brachii caput longum and caput breve

4. Biarticular Elbow Extensor Shoulder Retroversion (BEESR) (short: Biarticular Extensor (BE)):
m. triceps brachii caput longum

5. Monoarticular Shoulder Anteversion (MSA) (short: Shoulder Flexor (SF)):
m. deltoideus (pars clavicularis, anterior, lateral), m. superior pectoralis major, m. coracobrachialis

6. Monoarticular Shoulder Retroversion (MSR) (short: Shoulder Extensor (SE)):
m. deltoideus (pars spinalis, posterior), m. latissimus dorsi

The MTU structure is modeled using an extended Hill-type muscle model as described in Haeufle et al.
(2014) with muscle activation dynamics as introduced by Hatze (1977). The muscle model is a macroscopic
model consisting of four elements: the contractile element (CE), the parallel elastic element (PEE) and the
serial elastic element (SEE) and serial damping element (SDE), as illustrated in Figure 9b. The inputs to the
muscle model are the length of the MTU lMTU, the contraction velocity of the MTU l̇MTU and the muscular
activity a. The output of the muscle model is a one-dimensional muscle force FMTU. This force drives the
movement of the skeletal system. For the routing of the muscle path around the joints, deflection ellipses are
implemented as described by Hammer et al. (2019) (see Figure 10). The muscle path can move within these
ellipses and is deflected as soon as it touches the boundary.
All in all, the governing model dependencies for all muscles i = 1, ..., n are:

l̇CE
i = fCE(lCE

i , lMTU
i , l̇MTU

i , ai) (8)

ȧi = fa(ai, ui, l
CE
i ) (9)

FMTU
i = fF (lMTU

i , l̇MTU
i , lCE

i , ai) (10)

q̈ = fq(q̇,q,FMTU) , (11)

where q denotes a generalized state vector, in this case it can be defined as q = [ϕ,ψ] and FMTU ={
FMTU
i

}n
i=1

.
The mechanical parameters of the arm segments are taken from Kistemaker et al. (2006) and can be found

in Table 3. The positions and sizes of the deflection ellipses were chosen in order to match moment arms in
literature (see Figure 11) and can be found in Listing 1. For more details on this see Suissa (2017). The
(non-)muscle-specific parameters can be found in Table 4 and Table 5.

Length [m] d [m] Mass [kg] I [kgm2]

Upper arm 0.335 0.146 2.10 0.024

Lower arm 0.263 0.179 1.65 0.025

Table 3: Mechanical parameters of the skeletal structure (Kistemaker et al. (2006)) with d:
distance from proximal joint to center of mass and I: moment of inertia with respect to the
center of mass.
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Figure 10: Illustration of the positions of the deflection ellipses that are used for the muscle routing in two
different arm positions. Green arrows indicate active ellipses that deflect the muscle path, while
red arrows indicate inactive ellipses that do not change the muscle path.

Fmax [N] lCE,opt [m] lSEE,0 [m]

Monarticular Elbow Flexor (MEF) 1420 0.092 0.182

Monarticular Elbow Extensor (MEE) 1550 0.093 0.187

Monoarticular Shoulder Anteversion (MSA) 838 0.134 0.039

Monoarticular Shoulder Retroversion (MSR) 1207 0.140 0.066

Biarticular Elbow Flexor Shoulder Anteversion (BEFSA) 414 0.151 0.245

Biarticular Elbow Extensor Shoulder Retroversion (BEESR) 603 0.152 0.260

Table 4: Muscle-specific actuation parameters (Kistemaker et al. (2006) and Kistemaker et al. (2013)), with
Fmax: maximum isometric force, lCE,opt: optimal length of the contractile element, lSEE,0 rest length
of the serial elastic element. The lengths of lCE,opt and lSEE,0 were adapted to match the muscle path
routed through the ellipses in order to allow for a big range of motion. For this parameter adaptation
method see Suissa (2017).
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Figure 11: Comparison of the moment arms of the muscles in the model with simulation and experimental
data from literature for the elbow muscles (upper plot) and the shoulder muscles (lower plot). The
lines marked with "demoa" refer to the model by Suissa (2017) on which our model is based (for the
naming of the muscles see Table 4). We use the same geometry and position and size of the ellipses,
so our moment arms are the same as in the "demoa" model. The moment arms are compared to
a calculatory model by Bayer et al. (2017) (here M/B stands for mono- and biarticular, E stands
for elbow and F/E stands for flexion and extension, respectively) and to experimental data. The
black marks show experimental data of the biceps brachii (BB) and the triceps brachii (TB) taken
from Pigeon et al. (1996). The yellow line shoes a weighted combination of the monoarticular flexor
muscles that are represented by the MEF in the model. They are weighted according to their
proportion of the joint torques, see Sobotta (2010); Aumüller et al. (2017). The figure was taken
from Suissa (2017) with kind permission of the author.
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Parameter Unit Value Source Description

CE ∆W des [ ] 0.45 similar to Bayer et al.
(2017); Kistemaker et al.
(2006)

width of normalized bell curve in de-
scending branch, adapted to match
observed force-length curves

∆W asc [ ] 0.45 similar to Bayer et al.
(2017); Kistemaker et al.
(2006)

width of normalized bell curve in as-
cending branch, adapted to match
observed force-length curve

νCE,des [ ] 1.5 Mörl et al. (2012) exponent for descending branch
νCE,asc [ ] 3.0 Mörl et al. (2012) exponent for ascending branch
Arel,0 [ ] 0.2 Günther (1997) parameter for contraction dynamics:

maximum value of Arel

Brel,0 [1/s] 2.0 Günther (1997) parameter for contraction dynamics:
maximum value of Brel

Secc [ ] 2.0 van Soest et al. (1993) relation between F (v) slopes at
vCE = 0

Fecc [ ] 1.5 van Soest et al. (1993) factor by which the force can exceed
F isom for large eccentric velocities

PEE LPEE,0 [ ] 0.95 Günther (1997) rest length of PEE normalized to op-
timal length of CE

νPEE [ ] 2.5 Mörl et al. (2012) exponent of FPEE

FPEE [ ] 2.0 Mörl et al. (2012) force of PEE if lCE is stretched to
∆W des

SDE DSDE [ ] 0.3 Mörl et al. (2012) dimensionless factor to scale
dSDE,max

RSDE [ ] 0.01 Mörl et al. (2012) minimum value of dSDE (at
FMTU = 0), normalized to dSDE,max

SEE ∆USEE,nll [ ] 0.0425 Mörl et al. (2012) relative stretch at non-linear linear
transition

∆USEE,l [ ] 0.017 Mörl et al. (2012) relative additional stretch in the lin-
ear part providing a force increase of
∆F SEE,0

∆F SEE,0 [N] 0.4Fmax both force at the transition and force
increase in the linear part

Hatze m [1/s] 11.3 Kistemaker et al. (2006) time constant for the activation dy-
namics

c [mol/l] 1.37e-4 Kistemaker et al. (2006) constant for the activation dynamics
η [l/mol] 5.27e4 Kistemaker et al. (2006) constant for the activation dynamics
k [ ] 2.9 Kistemaker et al. (2006) constant for the activation dynamics
q0 [ ] 0.005 Günther (1997) resting active state for all activated

muscle fibers
ν [ ] 3 Kistemaker et al. (2006) constant for the activation dynamics

Table 5: Muscle non-specific actuation parameters for the muscles and the activation dynamics.
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1 % Gravity

2 PM.Gravity = [0 0 −9.80665];

3
4 %% %%%%%%%%%%%%%%%%%%%

5 % Segment parameters %

6 %%%%%%%%%%%%%%%%%%%%%%

7 PM.SegShoulder.p_Bone_CoM = [0 0 0]; %[m] position of Bone CoM relative to proximal joint

8 PM.SegShoulder.p_joint_distal = [0 −.1816 0]; %[m] position of distal joint relative to CoM

9
10 PM.SegShoulder.m_Bone = 16.895560; %[kg] m

11 PM.SegShoulder.MomInert_Bone = [0.096243 0.0811621 0.159251]; %[kg*m^2] Diagonal elements of the inertia tensor

12 PM.SegShoulder.ProdInert_Bone = [0 0 0]; %[kg*m^2] Non−diagonal elements of the intertia tensor in the order [I_yz I_zx I_xy]

13 PM.SegUparm.p_Bone_CoM = [0 0 0.146]*(−1); %[m] position of Bone CoM relative to proximal joint % *(−1) in comparison with demoa, source: Kistemaker2007

14 PM.SegUparm.p_joint_distal = [0 0 −0.189]; %[m] position of distal joint relative to CoM

15
16 PM.SegUparm.m_Bone = 2.10; %[kg] mass, source: Kistemaker2007

17 PM.SegUparm.MomInert_Bone = [0.0154388 0.024 0.00278951]; %[kg*m^2] Diagonal elements of the inertia tensor

18 PM.SegUparm.ProdInert_Bone = [0 0 0]; %[kg*m^2] Non−diagonal elements of the intertia tensor in the order [I_yz I_zx I_xy]

19 PM.SegForearm.p_Bone_CoM = [0 0 0.179]*(−1); %[m] position of Bone CoM relative to proximal joint, source: Kistemaker2007

20 PM.SegForearm.p_joint_distal = [0 0 −0.084]; %[m] position of distal joint relative to CoM %Note: difference to demoa model, where: [0.015 0 −0.084]

21
22 PM.SegForearm.m_Bone = 1.65; %[kg] mass, source: Kistemaker2007

23 PM.SegForearm.MomInert_Bone = [0.009824518 0.025 0.001500813]; %[kg*m^2] Diagonal elements of the inertia tensor

24 PM.SegForearm.ProdInert_Bone = [0 0 0]; %[kg*m^2] Non−diagonal elements of the intertia tensor in the order [I_yz I_zx I_xy]

25 PM.SegHand.p_Bone_CoM = [0 0 0.07]*(−1); %[m] position of Bone CoM relative to proximal joint %Note: difference to demoa model, where: [0.015 0.0000 0.07]*(−1)

26 PM.SegHand.p_fingertip = [0 0 −0.084]; %[m] position of distal joint relative to CoM

27
28 PM.SegHand.m_Bone = 0; %[kg] m

29 PM.SegHand.MomInert_Bone = [0 0 0]; %[kg*m^2] Diagonal elements of the inertia tensor

30 PM.SegHand.ProdInert_Bone = [0 0 0]; %[kg*m^2] Non−diagonal elements of the intertia tensor in the order [I_yz I_zx I_xy]

31
32 %%%%%%%%%%%%%%%%%%%%

33 % Deflection parameters %

34 %%%%%%%%%%%%%%%%%%%%

35
36 PM.Deflection.biart_flexor.rO = [0.03 −0.1816 0.02]; % Origin of the muscle relative to the center of mass of the parent body %Parent: Shoulder

37 PM.Deflection.biart_flexor.rI = [0.012, 0.0000, 0.12]; % Insertion of the muscle %Parent: Forearm

38 PM.Deflection.biart_flexor.Ellipse1.r = [0.018, 0.0000, −0.1425]; % Coordinates of the reference point of deflection ellipse 1 relative to the parent body %Parent:Uparm

39 PM.Deflection.biart_flexor.Ellipse1.G = [0 1 0]*0.0001; % Length of the half−axis of ellipse 1 in y direction

40 PM.Deflection.biart_flexor.Ellipse1.H = [0 0 1]*0.0001; % % Length of the half−axis of ellipse 1 in z direction

41 PM.Deflection.biart_flexor.Ellipse1.angle = [0,90,0]; % Angle [deg] of rotation of the ellipse triade around y−axis to orient the ellipse correctly

42 PM.Deflection.biart_flexor.Ellipse2.r = [0.012, 0.0000, 0.125]; %Parent: Forearm

43 PM.Deflection.biart_flexor.Ellipse2.G = [0 1 0]*0.0001;

44 PM.Deflection.biart_flexor.Ellipse2.H = [0 0 1]*0.0001;

45 PM.Deflection.biart_flexor.Ellipse2.angle = [0,0,0];

46
47 PM.Deflection.biart_extensor.rO = [−0.02−0.1816−0.03]; %Parent: Shoulder

48 PM.Deflection.biart_extensor.rI = [−0.0225, 0.0000, 0.1925]; %Parent: Forearm

49 PM.Deflection.biart_extensor.Ellipse1.r = [−0.0225, 0.0000, −0.165]; %Parent:Uparm

50 PM.Deflection.biart_extensor.Ellipse1.G = [0 1 0]*0.0001;

51 PM.Deflection.biart_extensor.Ellipse1.H = [0 0 1]*0.00001;

52 PM.Deflection.biart_extensor.Ellipse1.angle = [0,−90,0];

53 PM.Deflection.biart_extensor.Ellipse2.r = [−0.0, 0.0000, 0.1975]; %Parent: Forearm

54 PM.Deflection.biart_extensor.Ellipse2.G = [0 1 0]*0.0001;

55 PM.Deflection.biart_extensor.Ellipse2.H = [0 0 1]*0.03;

56 PM.Deflection.biart_extensor.Ellipse2.angle = [0,−60,0];

57
58 PM.Deflection.Shoulder_Anteversion.rO = [0.00, −0.1816, 0.05]; %Parent: Shoulder

59 PM.Deflection.Shoulder_Anteversion.rI = [0.01, 0.0000, 0.045]; %Parent:Uparm

60 PM.Deflection.Shoulder_Anteversion.Ellipse1.r = [0.025, −0.1816, 0.04]; %Parent: Shoulder

61 PM.Deflection.Shoulder_Anteversion.Ellipse1.G = [0 1 0]*0.0001;

62 PM.Deflection.Shoulder_Anteversion.Ellipse1.H = [0 0 1]*0.0001;

63 PM.Deflection.Shoulder_Anteversion.Ellipse1.angle = [0,0,0];

64 PM.Deflection.Shoulder_Anteversion.Ellipse2.r = [0.02, 0.0000, 0.1]; %Parent:Uparm

65 PM.Deflection.Shoulder_Anteversion.Ellipse2.G = [0 1 0]*0.0001;

66 PM.Deflection.Shoulder_Anteversion.Ellipse2.H = [0 0 1]*0.0001;

67 PM.Deflection.Shoulder_Anteversion.Ellipse2.angle = [0,90,0];

68
69 PM.Deflection.Shoulder_Retroversion.rO = [−0.035, −0.1816, 0.045]; %Parent: Shoulder

70 PM.Deflection.Shoulder_Retroversion.rI = [−0.01, 0.0000, 0.045]; %Parent:Uparm

71 PM.Deflection.Shoulder_Retroversion.Ellipse1.r = [−0.04, −0.1816, −0.01]; %Parent: Shoulder

72 PM.Deflection.Shoulder_Retroversion.Ellipse1.G = [0 1 0]*0.0001;

73 PM.Deflection.Shoulder_Retroversion.Ellipse1.H = [0 0 1]*0.0001;

74 PM.Deflection.Shoulder_Retroversion.Ellipse1.angle = [0,0,0];

75 PM.Deflection.Shoulder_Retroversion.Ellipse2.r = [−0.02, 0.0000, 0.1]; %Parent:Uparm

76 PM.Deflection.Shoulder_Retroversion.Ellipse2.G = [0 1 0]*0.0001;

77 PM.Deflection.Shoulder_Retroversion.Ellipse2.H = [0 0 1]*0.0001;

78 PM.Deflection.Shoulder_Retroversion.Ellipse2.angle = [0,90,0];

79
80 PM.Deflection.Elbow_flexor.rO = [0.01, 0.0000, 0.038]; %Parent:Uparm

81 PM.Deflection.Elbow_flexor.rI = [0.01, 0.0000, 0.12]; %Parent: Forearm

82 PM.Deflection.Elbow_flexor.Ellipse1.r = [0.0, 0.0000, −0.132]; %Parent:Uparm

83 PM.Deflection.Elbow_flexor.Ellipse1.G = [0 1 0]*0.0001;

84 PM.Deflection.Elbow_flexor.Ellipse1.H = [0 0 1]*0.005;

85 PM.Deflection.Elbow_flexor.Ellipse1.angle = [0,90,0];

86 PM.Deflection.Elbow_flexor.Ellipse2.r = [0.01, 0.0000, 0.135]; %Parent: Forearm

87 PM.Deflection.Elbow_flexor.Ellipse2.G = [0 1 0]*0.0001;

88 PM.Deflection.Elbow_flexor.Ellipse2.H = [0 0 1]*0.003;

89 PM.Deflection.Elbow_flexor.Ellipse2.angle = [0,90,0];
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90
91 PM.Deflection.Elbow_extensor.rO = [−0.022, 0.0000, 0.0605]; %Parent:Uparm

92 PM.Deflection.Elbow_extensor.rI = [−0.0225, 0.0000, 0.1925]; %Parent: Forearm

93 PM.Deflection.Elbow_extensor.Ellipse1.r = [−0.0225, 0.0000, −0.165]; %Parent:Uparm

94 PM.Deflection.Elbow_extensor.Ellipse1.G = [0 1 0]*0.0001;

95 PM.Deflection.Elbow_extensor.Ellipse1.H = [0 0 1]*0.00005;

96 PM.Deflection.Elbow_extensor.Ellipse1.angle = [0,−90,0];

97 PM.Deflection.Elbow_extensor.Ellipse2.r = [−0.0, 0.0000, 0.1975]; %Parent: Forearm

98 PM.Deflection.Elbow_extensor.Ellipse2.G = [0 1 0]*0.0001;

99 PM.Deflection.Elbow_extensor.Ellipse2.H = [0 0 1]*0.03;

100 PM.Deflection.Elbow_extensor.Ellipse2.angle = [0,−60,0];

Listing 1: Mechanics parameters defining the geometry and the mechanical properties.
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4.2 Equilibrium Point Controller

The bio-inspired hybrid equilibrium point controller exploits muscle characteristics by combining a feed-forward
command (uopen(t)) with spinal feedback on muscle fiber lengths (uclosed(t)). This feedback represents a sim-
plified version of the mono-synaptic muscle spindle reflex, assuming that the muscle spindles provide accurate
time-delayed information about the muscle fiber lengths lCE(t) (Kistemaker et al., 2006). The total motor
command ui for each muscle i is a sum of those components and is calculated as

ui(t) =
{
uopeni (t) + uclosedi (t) + uCPG

i (t)
}1
0

=

{
uopeni (t) +

kp
lCE,opt

(
λi(t)− lCE

i (t− δ)
)

+ uCPG
i (t)

}1

0

,
(12)

where kp is a feedback gain and the time delay δ is set to 10 ms representing a short-latency reflex delay
which is in a physiologically plausible range (More et al., 2010; Houk and Rymer, 1981). lCE,opt stands for
the optimal length of the contractile element. The operation {x}10 sets values x < 0 to 0 and x > 1 to 1. The
signal uCPG

i represents a central pattern generator (CPG).
The low-level controller gets two top-down input signals: The open-loop muscle stimulation uopeni (t) and

the desired muscle fiber lengths λi(t). Here, they represent an intermittent control approach, because they are
piecewise constant functions over time. Herein, each constant value represents an equilibrium posture (EP),
i.e. the system is in a stable equilibrium in these positions:

q̇ = 0 and q̈ = 0 , (13)

leading to the condition that the net joint moment vanishes in these postures (given enough time for the sys-
tem to settle). This allows for the calculation of the muscle stimulations uopeni (t) and the corresponding desired
muscle fiber lengths λi(t): For each EP, the muscle stimulations uopeni (t) can be determined by minimizing the
difference between the muscle stimulation uopeni and the desired level of co-contraction udes.:

4∑
i=1

(uopeni − udes.)→ min , (14)

subject to the constraint that the sum of all torques acting on the joint is zero, i.e. the system is in a stable
equilibrium position. The corresponding desired muscle fiber lengths λi are set by measuring the length of the
muscle fiber lengths lCE

i in the equilibrium positions.

4.2.1 Optimization of the control parameters for a point-to-point movement

For the goal-directed point-to-point movements, three EPs were used per movement. To follow experimental
trajectories, we optimized some of the control parameters: the shoulder and elbow angle for the second EP,
the desired level of co-contraction for the second and the third EP, the starting times for the second and the
third EP and the feedback gain kp. Using the pattern search algorithm in Matlab®, the quadratic difference
between the simulated and the experimental trajectory was minimized. The resulting parameters can be found
in Table 6.
Using the resulting parameters, the muscle stimulations uopeni were then optimized in order to fulfill the

conditions for equilibrium points (see Equation 14) using the Matlab® optimizer fmincon which is suitable
for finding the minimum of a constraint function.
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1→ 4 2→ 3 4→ 1 4→ 3

Shoulder
Angle

EP 1 76.4° 60.4° 36.4° 40.8°
EP 2 42.3° 37.5° 54.3° 47.1°
EP 3 37.3° 46.7° 75.9° 48.4°

Elbow
Angle

EP 1 61.1° 70.5° 70.0° 69.2°
EP 2 74.3° 77.5° 76.0° 75.9°
EP 3 67.9° 74.3° 61.9° 73.4°

Level of co-
contraction

EP 1 0.10 0.10 0.10 0.10
EP 2 0.077 0.094 0.38 0.33
EP 3 0.28 0.20 0.5 0.44

Switching
times

EP 1 0.00s 0.00s 0.00s 0.00s
EP 2 0.35s 0.43s 0.37s 0.19s
EP 3 0.57s 0.63s 0.57 0.41s

kp 0.27 0.09 0.92 0.39

Table 6: Resulting control parameters for the computer simulation of point-to-point movements. Some sim-
ulation parameters resulted from the optimization that was performed to match the corresponding
experimental trajectories: the shoulder and elbow angle for the second EP, the desired level of co-
contraction for the second and the third EP, the starting times for the second and the third EP and
the feedback gain kp. The other parameters were set according to the experimental data.

4.3 Dynamic oscillation movements with vibrating rod

The dynamic oscillation movements were inspired by the training and rehabilitation exercises performed with a
vibrating rod. When we experienced such a training, we noticed how, after some training, we were able to excite
the resonance frequency of the rod. This seems an interesting task in the sense of morphological computation,
as the dynamic interaction with the "umwelt" with its specific resonance characteristics, is surprisingly not
that difficult to learn.
A concept for modeling rhythmic excitement of the processes is the concept of the central pattern generator

(CPG). Central pattern generators are neural networks with the ability to produce rhythmic patterns without
receiving rhythmic input signals from higher control centers or sensory feedback. The control concept of CPG
implemented here is a simple sinusoidal pattern with a defined phase-shift between the stimultations to the
extensor and flexor muscles. This was inspired by the work of Sproewitz et al. (2008).
The vibrating rod was modeled based on a therapy rod called “Propriomed 1" that is produced by the

company Haider Bioswing. To implement the vibrating rod in Simulink the mechanical parameters of the
spring-mass damper system are determinded experimentally including the mass m, the spring constant k
and the damping constant d. For this purpose the vibrating rod was fixed and equipped with reflecting
markers at both ends of the rod. The vibrating rod is then deflected evenly on both sides and the resulting
vibration is recorded using a motion capture system(VICON motus). The resulting oscillation is analyzed and
the mechanical properties are calculated with the formula of the quasiharmonic oscillation. Resulting in a
damping constant of d = 0, 405 kg/s and a spring stiffness of k = 300, 523 kg/s2.
In order to verify the values for the spring and damper constant calculated from the experimental excitation

the calculated parameters are fed into the Simulink model and a bilateral deflection is simulated.
The Simulink model of the vibrating rod is connected to the wrist and consists of a prismatic joint as well as
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Figure 12: The oscillation generated in the simulation (in orange) corresponds to a large extent to the experi-
mentally generated oscillation (in blue) at the beginning. Only after a few oscillations a deviation
in amplitude and frequency can be observed.

the mass of the vibrating rod. The prismatic joint is actuated by a visco-elastic force element, which contains
the spring and damper constants. The is guided by a virtual rail to limit the movement to horizontal forward
movement, compensating for the influence of gravity.
The control of rhythmic movements is performed based on the general controller described in the main text

ui(t) =

{
uopeni (t) +

kp
lCE,opt

(
λi(t)− lCE

i (t− δ)
)

+ uCPG
i (t)

}1

0

, (15)

The first two terms are parameterized such that, in the absence of a CPG signal, the hand holds the rod in
front of the body at rest.
To excite the rod, as done in training and rehabilitation exercises, a sinusoidal signal uCPG mimicking the

output of a central pattern generator (CPG) is added to the motor command u:

uCPG(t) = û · sin(ω · t+ φ0) , (16)

with û = 0.1: amplitude, ω: angular frequency, φ0: phase. The muscles are synchronized by setting φ0 = 0

for flexing muscles and φ0 = π for extending muscles.
The oscillation is exited for 0 ≤ t ≤ 4s. After this, uCPG = 0 and the oscillation is then only a result of the

dynamics of the system and not of the controller anymore.
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List of Abbreviations

MTU muscle-tendon unit

CE contractile element

PEE parallel elastic element

SEE serial elastic element

SDE serial damping element

EF Elbow Flexor

MEF Monarticular Elbow Flexor

EE Elbow Extensor

MEE Monarticular Elbow Extensor

BF Biarticular Flexor

BEFSA Biarticular Elbow Flexor Shoulder Anteversion

BE Biarticular Extensor

BEESR Biarticular Elbow Extensor Shoulder Retroversion

SF Shoulder Flexor

MSA Monoarticular Shoulder Anteversion

SE Shoulder Extensor

MSR Monoarticular Shoulder Retroversion
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