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1 COMPARISON BETWEEN K-NEAREST NEIGHBOURS AND K-RECIPROCAL
NEAREST NEIGHBOURS

Here, we present more examples from three datasets by using the KRJD metric during clustering. Given an
probe (in the black box), nearest neighbours of the probe are shown. Examples in green boxes are those
of the same class as the probe and examples in red boxes are those of different classes. Fig. S1, Fig. S2
and Fig. S3 are examples from Omniglot, MiniImageNet and FS-Market1501, respectively. The upper row
in each panel is the result of k-nearest neighbours and the lower row is the result of k-reciprocal nearest
neighbours. By adopting KRJD, more positive examples (those in the same class) appear in the nearest
neighbourhood of the probe, demonstrating that the KRJD metric is effective to boost the performance of
our model.

(A)

(B)

(C)

Figure S1. Comparison between k-nearest neighbours and k-reciprocal nearest neighbours on Omniglot
dataset.
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Figure S2. Comparison between k-nearest neighbours and k-reciprocal nearest neighbours on
MiniImageNet dataset.

2 OTHER METRIC LOSS FUNCTIONS USED IN OUR MODEL
The goal of our study is to find a good embedding feature space from the unlabeled dataset X : {xi}, so
that we can build a few-shot classifier which can be directly applied on the downstream tasks efficiently.
Theoretically, many metric loss functions can be used in our model. Here we present the results on the
triplet loss (Weinberger and Saul, 2009) and the hardtriplet loss (Hermans et al., 2017) (Table S1, Table S2).
They have been widely used in face recognition and image retrieval. The triplet loss Ltriplet consists of
several triplets, each of which includes a query feature z, a positive feature z+ and a negative feature z−,
and is written as

Ltriplet(z, z
+, z−; θ) = max(0, ‖z− z+‖22 − ‖z− z−‖22 +m), (S1)

where m controls the margin of two classes, and the hinge term plays the role of correcting triplets, so that
the difference between the similarities of positive and negative examples to the query point is larger than a
margin m. However, in the above form, positive pairs in those “already correct” triplets will no longer be
pulled together due to the hard cutoff. We therefore replace the hinge term by a soft-margin formulation,
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Figure S3. Comparison between k-nearest neighbours and k-reciprocal nearest neighbours on FS-
Market1501 dataset.
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which gives

Ltriplet−SM (z, z+, z−; θ) = log
[
1 + exp(‖z− z+‖22 − ‖z− z−‖22 +m)

]
. (S2)

Eq. S2 is similar to Eq. S1, but it decays exponentially instead of having a hard cutoff and tends to be
numerically more stable (Hermans et al., 2017).

Here we simply discuss the relationships between the triplet loss and the prototypical loss we used in the
main text. Consider a M-way 1-shot episodic learning scenario, where a prototype ck is the support point
zk itself, the prototypical loss (Equ. 4 in the main text) is written as

Llog
proto(z, zk; θ) = − log

exp(−‖z− zp‖22)∑
k exp(−‖z− zk‖22)

,

= − log
1

1 +
∑

k 6=p exp(‖z− zp‖22 − ‖z− zk‖22)
,

= log

1 +∑
k 6=p

exp(‖z− zp‖22 − ‖z− zk‖22)

 .
(S3)

From Eq. S3, we can see that query point z is pulled towards the corresponded support point zp, and
meanwhile, z is pushed away from all other support points {zk}k 6=p; whereas, when using the triplet
soft-margin loss (Eq. S2), the query point z is only pushed away from one negative points z−. This implies
that in each update, Ltriplet−SM only interacts with a single negative example from one of other classes
and ignores many other negative examples. When K is small, optimizing the model with the two loss
functions has no big difference. For example, when K = 2 and m = 0, Eq. S2 and S3 become exactly
the same. However, when K becomes larger, the possible number of triplets grows cubically with M and
linearly with K, which makes it difficult to select non-trivial triplets. In such a situation, optimizing on
these uninformative triplets leads to the problem that the model gets stuck into a local optimum and suffers
slow convergence. This justifies why the model has a inferior performance using the triplet loss compared
to using the prototype loss (Table S1 and Table S2).

The inefficiency of the conventional triplet loss motivate us to mine hard triplets to alleviate its
shortcomings (Wang et al., 2014; Cui et al., 2016; Hermans et al., 2017). Mining hard negative examples
across the whole dataset is infeasible, since it is too time-costing to evaluate all embedding vectors in the
deep learning framework. So, we choose to do hard negative example mining within a batch, i.e., we select
the hardest positive and the hardest negative examples when forming the triplets, and obtain

Lhard
triplet−SM = log

[
1 + exp( max

zp∈{z+}
‖z− zp‖22 − min

zn∈{z−}
‖z− zn‖22 +m)

]
. (S4)

Compared to Eq. S3 which pushes a query point away from all other support points from different classes,
Eq. S4 focuses on pulling the hardest positive example closer and pushing the hardest negative example
away at the same time. By this, we get a slighbetter performance than that using the prototype loss (Table S1,
Table S2).
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5-way Acc. 20-way Acc.
1-shot 5-shot 1-shot 5-shot

Tripletloss 88.68 96.65 73.21 90.11
Prototypeloss 96.51 99.23 90.27 97.22

HardTripletloss 97.03 99.19 91.28 97.37
Table S1. Different metric loss functions used in our model on Omniglot.

5-way 10-way 15-way 20-way 50-way 100-way
Tripetloss 72.8 63.0 56.2 53.4 42.5 35.4

Prototypeloss 88.3 81.2 75.8 73.0 62.5 54.0
HardTripletloss 91.4 86.9 81.6 80.4 70.1 62.1

Table S2. Different metric loss functions used in our model on FS-Market1501. Only 1-shot learning is considered to mimic the typical single query condition
in person Re-ID applications.

5-way Acc. 20-way Acc.
1-shot 5-shot 1-shot 5-shot

ρ = 0.0001 78.88 92.73 59.49 81.50
ρ = 0.0002 82.85 94.82 64.83 85.61
ρ = 0.0003 91.43 97.79 78.48 93.04
ρ = 0.0004 97.57 99.35 92.62 97.82
ρ = 0.0005 97.03 99.19 91.28 97.37
ρ = 0.0006 97.64 99.34 93.39 98.06
ρ = 0.0007 97.16 99.12 91.28 97.48
ρ = 0.0008 97.49 99.25 92.14 97.72

Table S3. Effects of the ρ value in DBSCAN on the Omniglot dataset.

Dataset Market1501 FS-Market1501
training identities 751 751
training images 12936 12936
testing identities 750 750
testing images 19732 16483

distractors 2793 0
identity “0” 456 0

Table S4. Comparison between Market1501 dataset and FS-Market1501 dataset.

3 CONSTRUCTION OF THE FS-MARKET1501 DATASET
FS-Market1501 is a person re-identification (Re-ID) dataset constructed from the Market1501 dataset.
In the original dataset, a total of six cameras were used, including 5 high-resolution cameras, and one
low-resolution camera to collect images. Overall, the original dataset contains 32,668 annotated bounding
boxes of 1,501 identities, including 12936 images with 751 pedestrian identities for training, 3368 images
with 750 pedestrian identities for query and the remaining images as the gallery set. To improve the retrieval
difficulty, the original gallery set also contains some distractors, e.g., the low DPM value images and the
images of identity “0”. When constructing the FS-Market1501 dataset, we remove the distrators from
the gallery set and keep the remaining as well as the query set as our testing set. Totally, there are 12936
images with 751 pedestrian identities for training and 16483 images with the remaining 750 pedestrian
identities for evaluating the few-shot performance of our model(see Table S4).
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Omniglot
Methods (M, K) Clustering Metric (5,1) (5,5) (20,1) (20,5)

Baseline N/A N/A 57.97±0.84 79.25±0.67 34.17±0.45 59.33±0.41
AutoEncoder N/A N/A 53.63±0.99 77.34±0.65 32.98±0.43 55.01±0.33

Denoising AutoEncoder N/A N/A 59.63±0.88 79.89±0.59 34.78±0.44 60.88±0.41
InfoGAN N/A N/A 51.49±0.97 76.38±0.71 31.01±0.60 53.99±0.49

BiGAN+KNN N/A N/A 49.55±1.27 68.06±0.71 27.37±0.33 46.70±0.36
DeepClustering Kmeans Euclidean 59.07±0.91 79.81±0.76 34.05±0.51 60.12±0.48
UFLST (Ours) Kmeans Euclidean 69.54±0.78 86.18±0.64 47.11±0.49 69.19±0.41
UFLST (Ours) BSCAN KRJD 96.51±0.88 99.23±0.67 90.27±0.48 97.22±0.49

Table S5. Peformances of our model compared to other non-episodic unsupervised feature learning methods on Omniglot. All accuracy results are averaged
over 1000 test episodes and are reported with 95% confidence intervals.

MiniImageNet
Methods (M, K) Clustering Metric (5,1) (5,5) (5,20) (5,50)

Baseline N/A N/A 25.91±1.01 32.38±0.91 37.01±0.76 38.95±0.84
AutoEncoder N/A N/A 26.17±0.91 33.01±0.81 37.98±0.70 39.39±0.73

Denoising AutoEncoder N/A N/A 27.81±0.78 34.19±0.71 39.01±0.67 40.11±0.61
InfoGAN N/A N/A 29.81±0.81 36.47±0.71 40.17±0.72 42.46±0.62

BiGAN+KNN N/A N/A 25.56±1.08 31.10±0.63 37.31±0.40 43.60±0.37
BiGAN+LC N/A N/A 27.08±1.24 33.91±0.64 44.00±0.45 50.41±0.37

DeepClustering Kmeans Euclidean 28.91±0.89 36.01±0.71 39.29±0.81 41.98±0.56
UFLST (Ours) Kmeans Euclidean 31.77±0.75 43.03±0.71 51.35±0.69 55.72±0.61
UFLST(Ours) DBSCAN KRJD 37.75±0.78 50.95±0.71 59.18±0.72 62.27±0.67

Table S6. Peformances of our model compared to other non-episodic unsupervised feature learning methods on MiniImageNet. All accuracy results are
averaged over 1000 test episodes and are reported with 95% confidence intervals.

Omniglot
Methods (M, K) (5,1) (5,5) (20,1) (20,5)

ACAI/DC-CACTUs-MAML (Hsu et al., 2018) 68.84±0.80 87.78±0.5 48.09±0.41 73.36±0.34
ACAI/DC-CACTUs-ProtoNets (Hsu et al., 2018) 68.12±0.84 83.58±0.61 47.75±0.43 66.27±0.37

BiGAN-CACTUs-MAML (Hsu et al., 2018) 58.18±0.81 78.66±0.65 35.56±0.36 58.62±0.38
BiGAN-CACTUs-ProtNets (Hsu et al., 2018) 54.74±0.82 71.69±0.73 33.40±0.37 50.62±0.39
UMTRA+AutoAug (Khodadadeh et al., 2018) 83.80 95.43 74.25 92.12
AAL-MAML++ (Antoniou and Storkey, 2019) 88.40±0.75 97.96±0.32 70.21±0.86 88.32±1.22
AAL-ProtoNets (Antoniou and Storkey, 2019) 84.66±0.70 89.14±0.27 68.79±1.03 74.28±0.46

UFLST + Kmeans + Euclidean (Ours) 69.54±0.78 86.18±0.64 47.11±0.49 69.19±0.41
UFLST + DBSCAN + KRJD (Ours) 96.51±0.88 99.23±0.67 90.27±0.48 97.22±0.49

MAML Finn et al. (2017) (Supervised) 94.46±0.35 98.83±0.12 84.60±0.32 96.29±0.13
ProtoNets Snell et al. (2017) (Supervised) 98.35±0.22 99.58±0.09 95.31±0.18 98.81±0.07

Table S7. Comparison to state-of-the-art unsupervised few-shot learning models on Omniglot under different settings. All accuracy results are averaged over
1000 test episodes and are reported with 95% confidence intervals. The supervised results are borrowed from Hsu et al. (2018).

4 THE CHOICE OF MS AND ρ IN THE DBSCAN ALGORITHM
In the main text, we have demonstrated that for the clustering method DBSCAN, we set ms = 2 and ε to
be the mean of top P values of distance pairs, with P = ρN(N − 1)/2 and ρ = 0.0015. These values are
set to be relatively small to ensure that feature points are well separated, so that diverse episodic tasks can
be constructed. Here we analysis the effect of varying ρ when ms is fixed on the Omniglot dataset (see
Table S3). The effect of varying ms when fixing ρ is the same.
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MiniImageNet
Methods (M, K) (5,1) (5,5) (5,20) (5,50)

ACAI/DC-CACTUs-MAML (Hsu et al., 2018) 39.90±0.74 53.97±0.70 63.84±0.70 69.64±0.63
ACAI/DC-CACTUs-ProtoNets (Hsu et al., 2018) 39.18±0.71 53.36±0.70 61.54±0.68 63.55±0.64

BiGAN-CACTUs-MAML (Hsu et al., 2018) 36.24±0.74 51.28±0.68 61.33±0.67 66.91±0.68
BiGAN-CACTUs-ProtNets (Hsu et al., 2018) 36.62±0.70 50.16±0.73 59.56±0.68 63.27±0.67
UMTRA+AutoAug (Khodadadeh et al., 2018) 39.93 50.73 61.11 67.15
AAL-MAML++ (Antoniou and Storkey, 2019) 33.30±0.31 49.18±0.47 - -
AAL-ProtoNets (Antoniou and Storkey, 2019) 37.67±0.39 40.29±0.68 - -

UFLST + Kmeans + Euclidean (Ours) 31.77±0.75 43.03±0.71 51.35±0.69 55.72±0.61
UFLST + DBSCAN + KRJD (Ours) 37.75±0.78 50.95±0.71 59.18±0.72 62.27±0.67

MAML (Finn et al., 2017) (Supervised) 46.81±0.77 62.13±0.72 71.03±0.69 75.54±0.62
ProtoNets (Snell et al., 2017) (Supervised) 46.56±0.76 62.29±0.71 70.05±0.65 72.04±0.60

Table S8. Comparison to state-of-the-art unsupervised few-shot learning models on MiniImageNet under different settings. All accuracy results are averaged
over 1000 test episodes and are reported with 95% confidence intervals.

MiniImageNet
Methods (M, K) (5,1) (5,5) (5,20) (5,50)

UFLST with 4-layer Convs 37.75±0.78 50.95±0.71 59.18±0.72 62.27±0.67
UFLST with AlexNet 38.10±0.79 51.41±0.68 60.10±0.62 63.45±0.69
UFLST with Resnet12 39.75±0.73 53.95±0.75 62.18±0.67 68.12±0.61

Table S9. The model performance on MiniImageNet with deeper embedding networks.

5 TRAINING DETAILS OF THE UNSUPERVISED FEATURE LEARNING METHODS:
AUTOENCODER, INFOGAN AND DEEPCLUSTERING

In Sec.4.3 (main text), we compared our model with some unsupervised feature learning methods:
(Denoising) AutoEncoder (Vincent et al., 2008), InfoGAN (Chen et al., 2016), and DeepClustering (Caron
et al., 2018). For a fair comparison, we modified the feature extractor (the encoder in the AutoEncoder
model, the discriminator in the InfoGAN and the feature embedding network in the DeepClustering) to be
the 4-layer network as described in Sec.4.2 (main text).

AutoEncoder: we both run AutoEncoder and Denoising AutoEncoder in the current study. We don’t use
the form of parameter sharing, that is, the decoder has weights that are the transpose of the encoder weights.
The model is trained for 200 epochs in total. We used Adam with momentum to update parameters in the
encoder and the decoder, and the learning rate is set to 0.005 with an exponential decay after 100 epochs.
The mini-batch size is 128.

InfoGAN: the model is an information-theoretic extension to the Generative Adversarial Network that is
able to learn disentangled representations in a completely unsupervised manner. When training, we build
upon the code which can be found at https://github.com/Natsu6767/InfoGAN-PyTorch.
On the omniglot dataset, we set the dimension of incompressible noise to be 26, a categorical code with
dimension 10, and two continuous codes that can capture variations that are continuous in nature. On the
MiniImageNet dataset, we set the dimension of incompressible noise to be 128, a categorical code with
dimension 10, and 10 continuous codes.

DeepClustering: the model jointly learns the parameters of a neural network and the cluster assignments
of the resulting features. The main contribution of their work is to solve the degenerated solution problem in
progressive clustering by reassigning empty clusters during the Kmeans optimization. We follow the training
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details in the authors’ paper and train a 4-layer feature embedding network with a softmax classification
learning objective. The number of clusters is set too be 1000 in both Omniglot and MiniImageNet. The
readout layer is re-initialized after Kmeans clustering in each iteration. The number of iterations is set to
be 20 and the training epochs in each iteration is set to be 50. The initial learning rate in each iteration is
0.005 with an exponential decay at epoch 25. The mini-batch size is 128.

6 PERFORMANCES OF OUR MODEL COMPARED TO OTHER NON-EPISODIC
UNSUPERVISED FEATURE LEARNING METHODS WITH CONFIDENCE
INTERVALS

After obtaining the feature extractor in three unsupervised feature learning models, we simply build
a prototypical classifier to perform few-shot classification on downstream tasks, that is, performing
classification by computing distances to prototype representations of each class. Other methods can be also
used to perform few-shot classification on top of the embedding network, such as the K-nearest neighbour,
the linear classifier and the multi-layer perceptron. These methods don’t benefit from the episodic learning
paradigm and cause the probelm of meta-overfitting, as reported in Hsu et al. (2018). Hence, we only run a
prototypical classifier on top of these feature embedding networks in the current study (see Table S5 and
Table S6).

7 PEFORMANCES OF OUR MODEL COMPARED TO THE SOTA UNSUPERVISED
FEW-SHOT LEARNING MODELS WITH CONFIDENCE INTERVALS

Note that there is no confidence intervals reported in the UMTRA model. The confidence intervals on the
supervised learning methods MAML and ProtoNets are borrowed from Hsu et.al hsu2018unsupervised
(see Table S7 and Table S8 ).

8 SUPERVISED TRAINING ON THE FS-MARKET1501
Resnet50 pretrained on Imagenet is a conventional backbone model on person ReID benchmarks. In the
current study, we also use it as our backbone model on the FS-Market1501 dataset. Following (Xiong
et al., 2018), we add a batch normalization layer after the global pooling layer to prevent overfitting and
directly use the batch-normalized global pooling features to calculate the prototype of each class. When
training with triplet loss and hardtriplet loss, the margin m between negative pairs and positive pairs is set
as 0.3. When training with prototype loss, the setting is the same as decribed in Sec.4.2. For the results, see
Table S2.

9 USING RESNET12 AND ALEXNET AS THE FEATURE EMBEDDING NETWORK
ON MINIIMAGENET

In Sec.4.4, we showed that the performance of our model on MiniImageNet is competitive to other SOTA
unsupervised few-shot learning methods, but not one of the SOTA models. One possible reason is that the
feature embedding network is too simple (a 4-layer convnet) to extract the semantic meaning of images,
especially under the unsupervised setting. In other words, a shallow embedding network did not make
adequate use of UFLST’s expressive capacity, and opted to use a deeper embedding network to prevent
underfitting. Here we use Resnet12 and AlexNet as the feature embedding network which are more complex
that the 4-layer convnet to improve the performance of unsupervised few-shot learning. The Resnet12
has been used in several supervised few-shot learning models (Mishra et al., 2017; Oreshkin et al., 2018),
which is a smaller version of Resnet (He et al., 2016). The AlexNet is proposed by Krizhevsky et al. (2012)
which has had a large impact on the field of machine learning. Table S9 shows that when using a deeper
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embedding network, the few-shot classification performance on MiniImageNet is improved compared to
the shallow embedding network used in our model. Our model achieves 38.10%, 39.75% under the 5-way
1-shot scenario with AlexNet and Resnet12, respectively, which is the state-of-the-art results under the
unsupervised few-shot learning paradigm on MiniImageNet.
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