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1 SUPPLEMENTARY FIGURES

Figure S1. Interactive model simulator software. The interface of the interactive software used for the
manual search of the parameters. The system was controlled by some buttons to apply CS and US. Below
are shown some of the sliding bars used to change the synaptic weights of the connections. This live system
allowed to modify the parameters and to immediately observe the effect on the behavior of the model

Figure S2. Neural units activated/inactivated by a CS presentation after fear conditioning.
Differently from figure 2, where the width of the lines is proportional to the initial connection weights,
here all the fixed connections are represented with the same width. Instead, plastic connections are
thicker/thinner in case of potentiation/depotentiation with respect to their initial weight. Connections
and units in light-gray represent those that are inactive for the model inhibitions or lack of the US. The
CS-LApl, LAp2-CeL-ON and PLp-BAp4 connections are potentiated. This allows the CS to induce the
CeL-OFF inactivation and the activation of the fear neurons in BA, even without the US.

Figure S3. Neural units activated/inactivated by a CS presentation after fear extinction, at the
beginning of the second session. Differently from figure 2, where the width of the lines is proportional to
the initial connection weights, here all the fixed connections are represented with the same width. Instead,
plastic connections are thicker/thinner in case of potentiation/depotentiation with respect to their initial
weight. Connections and units in light-gray are those that are inactive for the model inhibitions or lack of
the US. While the CS-LAp1 (Clem and Huganir, 2010; Kim and Cho, 2017) and the CeL.-ON connections
remain potentiated, fear extinction drives the depotentiation of PLp-BAp4 (Vouimba and Maroun, 201 1};
Cho et al., 2013) connection and the potentiation of BAp2-ILp (Vouimba and Maroun, 201 1)) and BAp3-ITC
(Amano et al., 2010) connections. These synaptic changes result in the CS-induced activation of ITC, that
shutdown the fear unit BAp4.

Figure S4. Neural units activated/inactivated by a CS presentation after fear reinstatement.
Differently from figure 2, where the width of the lines is proportional to the initial connection weights,
here all the fixed connections are represented with the same width. Instead, plastic connections are
thicker/thinner in case of potentiation/depotentiation with respect to their initial weight. Connections
and units in light-gray are those that are inactive for the model inhibitions or lack of the US. During
reinstatement there is a partial reversion of the plastic changes observed after extinction. In particular,
PLp-BAp4 is potentiated and BAp2-ILp is depotentiated (Vourmba and Maroun, 2011). The model predicts
that the depotentiation of the BAp3-ITC connection is not necessary to obtain fear reinstatement.




Supplementary Material

Figure S5. Neural units activated/inactivated during conditioning, when the US is substituted by
the activation of the excitatory units in LA. Behavior of the system when fear conditioning is induced as
described in Johansen et al.|(2010). Differently from figure 2, where the width of the lines is proportional to
the initial connection weights, here all the fixed connections are represented with the same width. Instead,
plastic connections are thicker/thinner in case of potentiation/depotentiation with respect to their initial
weight. Connections and units in light-gray are those that are inactive for the model inhibitions or lack of
the US. Note that the extinction pathway (IL-BAp3-ITC) is activated together with the fear pathway. This
reduces the activity of the fear unit BAp4 and, thus, the connection PLp-BAp4 is not potentiated.

Figure S6. IL is not necessary for the within-session extinction. The picture shows the effect of a CS
presentation on the activation/inactivation of the neural units at the end of the first session of extinction,
if the IL is inactivated as in |Quirk et al.| (2000). Differently from figure 2, where the width of the lines
is proportional to the initial connection weights, here all the fixed connections are represented with the
same width. Instead, plastic connections are thicker/thinner in case of potentiation/depotentiation with
respect to their initial weight. Connections and units in light-gray are those that are inactive for the model
inhibitions or lack of the US. Even though IL cortex is inactivated, DSE sets off the input from BA to CeM,
carrying out the within-session extinction. However, if IL is not active, the connections BAp2-ILp and
BAp3-ITC are not potentiated, and the connection PLp-BAp4 is not depotentiated, as should happen during
fear extinction (Kim and Cho, 2017; Vouimba and Maroun, 2011};|/Cho et al., [2013;|Amano et al., 2010).

Figure S7. Results of the sensitivity analysis targeting the synaptic weight parameters of the model.
The shown lower and upper values of each parameter indicates the first value (in percent of the original
level, explored in steps of +£5%) that causes the failure of the reproduction of at least one target experiment.
Some parameter ranges are truncated: values at —100% and +100% indicate that at those values the
model still reproduces all experiments. In particular, some parameters (weights of connections ILp-BAp3,
ILp-BAp4, ITC-BAp4, ILp-ITC, BAp3-ITC, LAvip-LApv, US-LAvip, US-ILu, US-CeM, ILp-BApv2) can
span values much higher than +100% (see text). A value of —100% indicates that the synapse was set to
zero; that is, it could be removed altogether without affecting the results.

Figure S8. Sensitivity analysis performed on the plasticity parameters. The chart shows the range
of variation of the parameters of synaptic plasticity up to -100% and +100%. Many parameters (DSE
BAp5-CeM, DSE BAp4-CeM, LTP CS-LApl1, DSI BAcck-BAp2, LTP BAp2-ILp, LTP BAp3-ITC, LTP
LAp2-CeL-ON, LTP PLp-BAp4) span over a value much higher than these values (see text).
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2 SUPPLEMENTARY TABLES

Table S1. Leaky units parameters. Each value represents
the mean of the values reported in the corresponding
references. Firing threshold was calculated by subtracting

from the actual threshold the resting potential of the neurons.

Unit | 7 (ms) | References Threshold | References ¢ (Hz) References
LApl, | 20.6 Rosenkranz 28.1 Faber and Sahl | 35.5 Kaneko et al.
LAp2 (2011); [Fink and| (2004); [Sosulinal (2008); [Fink and|
LeDoux| (2013) et al| (2010); LeDoux| (2013)
Perkowski
and Murphyl|
(2011)); [Fink and
LAvip,| 13.3 Kanek 27.2 Kaneko et al.| 44.7 Kaneko et al.
CeL- et al| (2008); (2008); [Sosulina 2008)); [Sosulinal
ON Rhomberg et al.| 2010 et al] (2010);
(2018)) 'Rhomberg et al.|
(2018)
LApv, | 13.0 Kaneko 31.9 Kaneko et al.| 144 Kaneko et al.
BApv, et al| (2008); (2008); [Sosulina (2008)
BAcck Rhomberg et al.| et al| (2010);
CeL- (2018)) Rhomberg et al.|
OFF (2018)
BApl, | 31 Kanek: 1| 28.1 Faber an hi | 35.5 Kaneko et al.
BAp3, (2008) (2004); Sosulina (2008); Fink and
BAp4, et al| (2010);
BApS Perkowski
and Murphyl|
(2011); [Fink and|
BAp2 | 15 Ehrlich et all| 28.1 Faber an hi | 35.5 Kaneko et al.
2012) (2004);[Sosuling (2008); Fink and
Perkowski
and Murphyl|
(2011); [Fink and|
PLp, | 19 Povysheva et al|| 22.2 Hedrich 1| 45.5 hen 1
ILp (2003) (2014); Tai et al; 2013)
(014)
PLs, [29.2 |lAli and | 26.3 Hu and Agmon | 75.5 hen et al
ILs Thomson @ @
(2007)
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PLpv, | 7.7 Povysheva et al|| 30.8 Povysheva et al.|| 163.3 Chen et al.
ILpv (2005)) (2005)) 201
ITC 23.5 Geracitano et al.|| 41.2 Geracitano 30.4 Geracitano et al.
(2007); Mariko| et _al] (2007); (2007);  Bust
etal](2011) Kanek 1 et al| (2011);
(2008); [Sosulinal Marnko et al.
et al| (2010); (201T))
Manko et al.
(2011); [Gungor
et_al] (2015);
'Rhomberg et al.|
(2018)
CeM | 35.6 Martina et al.l| 27.5 Martina et al.l| 25 Busti et al.
(1999); Busti (1999); |Gungor] (201T))
et al] (2011); 2015
\Gungor al.|
(2013)
Table S2. Fixed connections of the model. List of
connections, literature supporting their existence, and values
of their synaptic weights found through the procedures
illustrated in Section 2.6 of the main text. These values were
used to produce all the simulations in the figures from 3 to
12.
Connection References Weight
US to LApl Romanski et al.| (1993); Blair et al. (2001) 1.52
US to LAvip Wolff et al.| (2014); [Krabbe et al. (2018); | 1.8
Rhomberg et al.| (2018))
US to ILpv Hypothesis 7.0
CS to LApl Romanski et al.| (1993); Blair et al. (2001) 0.35
CS to LAp2 Blair et al.| (2001 1.0
CS to LApv Wolff et al.[(2014); Krabbe et al.[(2018) 0.505
LAvip to LApv Wolff et al. (2014); Krabbe et al| (2018); | 1.805
homberg et al.| (2018
LApl to CeL-ON Pape and Pare|(2010); Li et al.| (2013 0.8
LAp2 to CeL-ON Pape and Pare|(2010); Li et al. (2013 0.8
CeL-ON to CeL-OFF Haubensak et al.[ (2010 0.7
CeL-OFF to CeM Haubensak et al.[ (2010 2.265
LApv to LApl Wollff et al.| (2014)); Krabbe et al.| (2018 0.33
LApv to LAp2 Wolff et al.| (2014)); Krabbe et al.| (2018 0.4
LApl to BApl Stefanacci et al. (1992); Pitkinen et al. (1995); | 7.0804
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LApl to BAp2

Stefanacci et al.|(1992);

Pitkinen et al. (1995); | 5.0

Savander et al.| (1997)

LApl to BApS

Stefanacci et al.| (]1992[);

Pitkiinen et al. (1995); | 3.0

Savander et al.|( 1997)

LAp1 to BAcck

Stefanacci et al. (1992);

Pitkinen et al. (1995); | 1.9

Savander et al.|( 1997)

BAcck to BApl Vogel et al. (2016 0.7
BAcck to BAp2 Vogel et al. (2016 0.7
BApl to PLs Courtin et al.| (2014); |Cummings and Clem| | 1.2
(2020)
BApl1 to PLpv McGarry and Carteﬁ (]2016[) 1.4
BApl to PLp Senn et al.[(2014) 2.2
BAp2 to ILs Courtin et al.| (2014); Cummings and Clem | 2.5
BAp2 to ILpv McGarry and Carter (2016) 0.3
BAp2 to ILp Senn et a1.| (]2014[) 33
PLs to PLpv Courtin et al.| (2014); Cummings and Clem | 1.35
(2020)
PLpv to PLp Courtin et al. (]2014[) 1.2
PLp to ILp Marek et al.| (2018) 1.2
PLp to BAp4 Vertes (2004); Cho et al. (2013); |Courtin et al.|| 3.6
(014)
PLp to BApv Cho et al[(2013) 0.8
ILs to ILpv Courtin et al.| (2014); Cummings and Clem| | 0.5
(2020)
ILpv to ILp Courtin et al. (2014) 1.5
ILp to ITC Vertes| (2004); Pinard et al. (2012)); (Cho et al.|| 1.0
(013)
ILp to BAp3 'Vertes (2004); (Cho et al. (2013); Courtin et al./| 3.3
(ot4)
BApv to BAp4 Cho et al. (2013) 0.6
BAp3 to ITC Amano et al.|(2010) 1.0
ITC to BAp4 Asede et al. (2015 8.0
BAp4 to CeM Asede et al. (2015 2.0
BApS to CeM Asede et al. (2015 1.8
Table S3. Plastic connections. List of the model plastic
connections and type of plasticity and plasticity parameters
used to produce all the simulations in the figures from 3 to
12.
Connection Plasticity type i o
CS-pathway to LApl | LTP 0.00012 0.85
LAp2 to CeL-ON LTP 0.0002 0.85
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PLp to BAp4 LTP 0.001 0.5
PLp to BAp4 LTD 0.00000014 0.5
BAp2 to IL LTP 0.0000002 0.5
BAp2 to IL LTD 0.0001 0.5
BAp3 to ITC LTP 0.000000018 | 0.5
BAcck to BAp2 DSI 0.0000005 -
BAp4 to CeM DSE 0.000004 -
BApS to CeM DSE 0.000005 -
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Table S4. Constraints used in the sensitivity analysis. List
of constraints and references supporting their existence.

Constraints References
After conditioning, CeM must fire more than 70% of its | Pape and
maximum activity following CS. Pare| (2010);
After extinction CeM must fire less than 20% of its | |/Amano et al.
maximum following CS. (2010).
After conditioning, the fear unit BAp4 must fire more than | Herry et al.
20% of its maximum following CS. (2008)).
After conditioning the persistent unit BApl must fire more | Amano
than 20% of its maximum following CS. et al.
After extinction the persistent unit BAp1 must fire more than | (2011);
20% of its maximum following CS. Trouche
After conditioning the persistent unit BApS must fire more | let al.
than 20% of its maximum following CS. (2013).
After extinction the persistent unit BApS must fire more than
20% of its maximum following CS.
After conditioning the extinction unit BAp3 must fire less | Herry et al.
than 20% of its maximum following CS. (2008)).
After extinction the extinction unit BAp3 must fire more
than 20% of its maximum following CS.
In the last extinction trial the unit BAp2 that project to ILp | [Senn_et al.
must fire more than it did in the first trial. (2014).
After reinstatement CeM must fire more than 70% of its | Rescorla
maximum following CS. and Heth
(1975).
After reinstatement ILp must fire less than 20% of its | Hitora-
maximum following CS. Imamura
et al.
(2015).
After conditioning LAp1 stimulation from CS-pathway must | McKernan
exert a PSP at least higher than 20%. and
Shinnick-
Gallagher
(1997);
Tsvetkov
et al.
(2002);
Schafe et al.
(2005)).
After conditioning CeL.-ON stimulation from LAp2 must | Li et al.
exert a PSP at least higher than 20%. (2013).
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After extinction ITC stimulation from BAp3 must exert a | |Amano

PSP at least higher than 20%. et al.
(2010).

After conditioning BAp4 stimulation from PLp must exert a Vouimba

PSP at least higher than 20%.

After extinction BAp4 stimulation from PLp must exert a and
Maroun

PSP at least lower than 20%. @011)

After extinction ILp stimulation from BAp2 must exert a '

PSP must exert a PSP at least higher than 20%.

After reinstatement ILp stimulation from BAp2 must exert a

PSP at least lower than 20%.

After reinstatement BAp4 stimulation from PLp must exert

a PSP must exert a PSP at least higher than 20%.

The PL inactivation should not influence conditioning, but | |(Corcoran

only fear expression: during the third trial of conditioning | and Quirk

CeM activation should be lower than 50% if the PL is | (2007).

inactivated, but during the test trial, when the PL is

reactivated, should be at least 90% than control, as in the

target experiment.

As in the target experiment, potentiation of CS-pathway | Nabavi et al.

to LA should not be sufficient to exert conditioning. If | (2014).

the weight of this connection is increased of 300%, CS-

induced CeM activation should be lower than 30%. After

conditioning, CeM activation should be higher than 70%,

but should return to pre-conditioning level if CS-pathway to

LApl weight is decreased to baseline level.

LA inactivation should impair conditioning: CeM activation | Wilensky

following CS should be lower than 50% compared to control, | let al.

as in the target experiment. (2006).

CeL inactivation should impair conditioning: CeM activation | Wilensky

following CS should be lower than 50% compared to control, | let al.

as in the target experiment (2006).

Before conditioning CeL-ON must fire less than 20% of its | = .

. . Ciocchi
maximum following CS. T
After conditioning CeL.-ON must fire more than 70% of its g 3 1'0)

maximum following CS.

Before conditioning CeL-OFF must fire more than 70% of
its maximum following CS.

After conditioning CeL-OFF must fire less than 20% of its
maximum following CS.
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As in the target experiment, substituting US with LAp1 and
LAp2 maximal activation during conditioning should induce
CeM to be conditioned to CS, although its activity should
be substantially lower than classical conditioning (between
50% and 60% of maximal activity).

Between-session extinction: during the first trial of the
second extinction session CeM must fire less than during the
first trial of the first extinction session.

Blocking DSI/E in whole amygdala should impairs between-
and within-session extinction. The ratio between CeM
activation in control and in DSI/E impaired system during
the last two trials of session 1 and the last two trials of
session 2 should be lower than respectively 0.34, 0.4, 0.46,
0.41, mirroring the measurement of freezing during the last
two trials of sessions 1 and 3 of the target experiment.

Blocking DSE in CeM in the first session should impairs
within-but not between-session extinction. CeM activity
during the first two and the last two trials of the second
extinction session should be no more than 5% different
between controls and impaired system. The ratio between
CeM activation in control and in DSI/E impaired system
during the last two trials of session 1 should be less than
respectively 0.21, 0.33.

Blocking DSE in BA in the first session should impairs
between-but not within-session extinction. CeM activity
during the last two trials of the first and second extinction
session should be no more than 5% different between
controls and impaired system. The ratio between CeM
activation in control and in DSI/E impaired system during
the first three trials of session 2 should be less than 0.47,
mirroring the average of the measurement of freezing in the
first three trials of session 2 in the target experiment.

Johansen

et al.
2010).
Quirk et al.
(2000);
Kamprath
et al.
(2006);
Plendl and
Wotjak!
2010).
Marsicano
et al.
(2002).
Kamprath
et al.
2011)).
Kamprath
et al.
2011)).
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Inactivation of the IL does not influence conditioning
or within-session extinction, but only between-session
extinction. The last trial of conditioning, the last two trials
of the first and of the second extinction session should be
no more than 5% different between controls and impaired
system. The ratio between CeM activation in control and in
the IL impaired system during the first three trials of session
2 should be less than 0.27, mirroring the average of the
measurement of freezing in the first three trials of session 2
in the target experiment

Quirk et al.
(2000).

As in the target experiment, activation of the IL should speed
up extinction: given that in our control extinction takes 7
trials, we defined extinction to occur earlier if during trials 3
and 5 in the IL stimulated system CeM activity is equal or
less than, respectively, trials 5 and 7 of the control.

Vidal-
Gonzalez

et al.
(20006).

As in the target experiment, activation of ILp projecting
PLp connection should speed up extinction: given that in
our control extinction takes 7 trials, we defined extinction
to occur earlier if during trials 3 and 5 in the IL stimulated
system CeM activity is equal or less than, respectively, trials
5 and 7 of the control.

Marek et al.
(2018).

As in the target experiment, deactivation of ILp projecting
PLp connection should slow down extinction: given that in
our control extinction takes 7 trials, we defined extinction to
occur later if during trials 9 and 11 in impaired system CeM
activity is equal or higher than, respectively, trials 7 and 9 of
the control.

Marek et al.
(2018)).

Table SS. Experimental targets of the model

Experimental target

| References

Basic conditioning, extinction, and reinstatement processes

During fear conditioning and extinction three classes of | Repa et al.
neurons emerge: fear neurons in BA and CeM, extinction | (2001);
neurons in BA, ITC, and the IL, and persistent neurons in | Milad and

LA and BA.

Quirk (2002);
Santini et _al.
(2008); Herry
et al. (2008);
Amano et al.
(2010)p; An
et al.| (2012)).
BA neurons that project to the IL are progressively |[Senn et al.
recruited during within-session extinction. (2014).
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An US presented after extinction reinstates the freezing
response to the CS.

R rl n

Heth| (1975).

Fear reinstatement is associated with a reduced activity
in the IL.

Hitora-

Synaptic plasticity

Fear conditioning potentiates the synapses between the
CS-pathway and LA pyramidal neurons.

Fear conditioning potentiates the excitatory synapses | Li 1
between LA and CeL neurons. (2013).
Fear conditioning strengthens the connections between | [Vouimba

mPFC and BA.

(o11).
Fear extinction does not eliminates LTP of the CS- | Kim and Cho
pathway established during conditioning. (2017).
Fear extinction strengthens the connections between BA | Vouimba |
and the mPFC. and Maroun
(2011).
Fear extinction weakens the connections between the | Vouimba |
mPFC and BA. and Maroun
(2011); [Cho
et al. (2013
Fear extinction induces LTP at the synapses between BA | /Aman 1
and ITC. (2010).
Fear reinstatement reverses changes induced by fear | [Vouimba
extinction in BA-mPFC and in mPFC-BA connections. | land _Maroun

Fear conditioning

Inhibition of the PL reduces fear expression, but does not
influence conditioning.

Frontiers
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LA is necessary for fear conditioning expression: once
conditioning is established, it can be eliminated (as in
reinstatement) through the optogenetic induction of LTD
and LTP at the synapses between the CS-pathway and LA
pyramidal neurons.

Nabavi et al.

(2014); |Kim!
and Cho
(2017).

Fear conditioning cannot be established solely by
optogenetic induction of LTP at the synapses between
CS-pathway and LA pyramidal neurons.

Nabavi et al.
(2014).

CeL is necessary for fear conditioning.

Wilensky

et al. (2006);
Ciocchi et al.
(2010).

Two classes of CeL neurons respond differently to CS
after fear conditioning, one by increasing its firing and
the other one by decreasing its firing rate.

Ciocchi et all
(2010).

Fear conditioning can be obtained without the US by
pairing the CS with the optogenetic depolarization of
pyramidal neurons in LA.

Johansen et al.
(2010).

Fear extinction

Blockade of endocannabinoids in the whole amygdala
impaires within- and between-session extinction.

Marsicano

et al.| (2002);
Kamprath et al.
(2011)); Plendl
and  Wotjak
(2010).

Blockade of endocannabinoids in CeM reduces within-
session extinction, but spares between-session extinction.

Kamprath et al.
(201T).

Blockade of endocannabinoids in BA impairs between-
session extinction, but spares within-session extinction.

Kamprath et al.
(2011).

The IL inhibition does not influence fear expression,
conditioning, or within-session extinction, but impairs
between-session extinction.

The IL stimulation speeds up fear extinction.

Quirk et al|
(2000);  |Do-
Monte et al.
(2015); |Kim!
et al. (2016b);
Bloodgood

et al.| (2018),
but see [Lebron
et al.| (2004)).
Vidal- ]
Gonzalez

et al.| (20006);
Adhikari et al.
(2015).
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Stimulation of the PL projections to the IL speeds up fear | Marek 1
extinction. (2018).
Inhibition of the PL projections to the IL impairs early | Marek et al.
extinction. (2018).
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Table S6. List of target experiments on fear extinction,
and models discussed in the paper that addressed them.
“This model’ refers to the model reported in this paper.

Experimental target and references

Cued fear conditioning: |Quirk et al. (2000);

Quirk and

model;

(2008).

This

MorEn| (2001);
Burgos  and
Murillo-

Murillo- |

et al| (2011);
ohn et al.
(2013); [Kim
et al.| (2013Db);
Moustafa

et al. (2013);

rrer n

Alexandre

(2015); [Kim
(2016a);
Feng et al|
(2016);
(2016);
Benn 1

Cued fear conditioning requires CS onset preceding US

onset: |Ayres et al.| (1987); Albert and Ayres| (1997);
[Esmoris-Arranz et al.| (2003).

Cued fear conditioning requires plasticity in LA:
Rodrigues et al.| (2001); Sotres-Bayon et al.| (2007).

Fear conditioning potentiates the synapses between the | This model;

CS-pathway and LA pyramidal neurons: McKernan and| | L1 et  al.

'Shinnick-Gallagher (1997)); Tsvetkov et al.| (2002));/Schafe] | (2009); [John|

(2003). 2013);
Kim et

al.
(2013b));

et al.| (2016)).

Fear conditioning potentiates the excitatory synapses
between LA and CeL neurons: |L1 et al. (2013)).

This model.

14
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Fear conditioning strengthens the connections between
the mPFC and BA: Vouimba and Maroun| (2011).

This model.

Once conditioning is established, it can be erasered and
reinstated through the optogenetic induction of LTD and
LTP at the synapses between the CS-pathway and LA

pyramidal neurons: Nabavi et al.| (2014)); [Kim and Cho
2017).

This model.

Fear conditioning cannot be established solely by
optogenetic induction of LTP at the synapses between

CS-pathway and LA pyramidal neurons:
(2014).

This model.

Cued fear conditioning should be also expressed outside
the context where conditioning occurred:
King (1983).

Krasn 1
(201T).

Second-order fear conditioning: |Marlin (1983);

|Helmstetter and Fanselow| (1989).

Krasne et al.
(]2()T[).

Immediate shock deficit: |Fanselow| (]1990[).

Krasne et al.
2011).

CeL is necessary for fear conditioning: Wilensky et al.| This model.
Two classes of CeL neurons respond differently to CS | This model;
after fear conditioning, one increasing and the other | |Carrere  and|
decreasing its firing: [Ciocchi et al| (2010). Alexandre

(2015).
Pre-conditioning ablation of the hippocampus allows | Krasn: 1
contextual fear conditioning, but accentuate the | (2011).
immediate shock deficit: Wiltgen et al.| (2006).
Pre-conditioning ablation of the hippocampus makes | [Krasne et al.

contextual fear conditioning dependent on the IL:
Zelikowsky et al. (2010).

An already conditioned CS blocks the conditioning to a
new stimulus if presented with it: McNish et al.| (2000);
Cole and McNally (2007).

MorEn! (2001);

2011).

I

Conditioned response decrease if CS is delivered in a

Burgos  and

different context than conditioning: (Gordon et al.| (1981)); | Murillo-

m (]W[); Millin and Riccio| qm[)
(2007)

Post- but not pre-training ablation of BA impairs | [Krasn 1

conditioning: |Anglada-Figueroa and Quirk (2005); | (2011)

Jimenez and Maren| (2009).

Contextual fear conditioning depends on a functional | Krasn 1

BA: Helmstetter] (1992); Fanselow and Kim| (1994);
Calandreau et al.|( 2005)).

Frontiers
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Hippocampus impairment blocks contextual fear

conditioning: [Young et al.| (1994)); Stiedl et al.| (2000);

Bast et al. (2003)); Quinn et al.| (2005); Parsons and Otto

(2008)); Schenberg and Oliveira (2008)); Raineki et al.
10).

(2010

Krasn 1

(2011).

Hippocampus impairment does not affect contextual fear
conditioning if the context is long-familiar:
(1994); |Anagnostaras et al.| (2001).

Krasne et al.
(2011) .

Hippocampus impairment does not affect cued fear
conditioning: Kim and Fanselow|(1992).

Krasne et al.
(2011);
Moustafa

Recent but not remote contextual fear is erased by
hippocampus ablation: Kim and Fanselow|(1992).

Krasne et al.
(2011).

mPFC is essential for the expression of remote but not | [Krasne et al.
recent trace fear conditioning: (Quinn et al.| (2008). (2011).
Inhibition of the PL reduces fear expression, but does not | This model.
influence conditioning: (Corcoran and Quirk| (2007).

During cued fear conditioning in LA appear transiently | [Kim et al.

plastic cells: [Repa et al.| (2001).

(2013Db).

Acetilcholine controls cued vs. contextual fear ||Carrere  and
conditioning: (Calandreau et al| (2006).

201
During fear conditioning, neurons in LA with higher | Kim et al.

excitability are more likely to be incorporated in the fear

engram: [Han et al. (2()07|, 2009).

20164); [Feng
et al.[(2016).

The size of the fear engram in LA is regulated by synaptic | Feng et al|
inhibition: Morrison et al.| (2016). (2016).
Fear conditioning can be obtained without the US by | This model.

pairing the CS with the optogenetic depolarization of

pyramidal neurons in LA: Johansen et al.| (2010).
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Fear extinction: |Quirk et al. (2000);

(2008).

Quirk and Mueller|

Extinction is impaired by periacqueductal opiate
receptors antagonists: McNally et al.| (2004); [Parsons

Extinction requires synaptic plasticity in BA: Sotresj This model;

Bayon et al.| (2007); [Zimmerman and Maren| (2010) (but | Krasne et al.l

see [Tronson et al.|(2006)). (201T).

Extinction does not require synaptic plasticity in BA: | Moustafa et al.

Tronson et al.| (2006) (but see Sotres-Bayon et al.| (2007); | (2013).

Zimmerman and Maren| (2010)).

Fear extinction strengthens the connections between BA | This model.

and the mPFC: [Vouimba and Maroun| (2011).

Fear extinction weakens the connections between the | This model.

mPFC and BA: [Vouimba and Maroun| (2011)); |(Cho et al.|

(013

Fear extinction induces LTP at the synapses between BA | This model;

and ITC: [Amano et al.[(2010). Li 1
(2011);
et al. (2013).

Fear extinction does not eliminates LTP of the CS-| This model;

pathway established during conditioning: |Kim and Cho

(2017).

John et al

(2013)); L1 et al.
201

(@)

Frontiers

17



Supplementary Material

BA neurons that project to the IL are progressively | This model.

recruited during within-session extinction:

(019)

The IL units increase their activity during extinction | This model;

recall: Milad and Quirk (2002). Moustafa
(2013);

Bennett et al.
2019)).

The IL inhibition does not influence fear expression,
conditioning, or within-session extinction, but impairs
between-session extinction: [Quirk et al| (2000);
Bloodgood et al (2018)); Do-Monte et al.| (2015)); Kim|
et al] (2016b) (but seeLebrdn et al. (2004)).

This model.

The IL inhibition impairs late phase of the first session

extinction: |[Lebron et al.| (2004).

Moustafa et al.

E

The IL is not necessary for extinction recall: Do-Monte | Li et  al|
(but see |[Laurent and Westbrook! (2009)); Kim| | (2016)).

etal| 2016b)).

The IL stimulation speeds up fear extinction: Vidaljl This model.
Gonzalez et al | (]mp; m (]m

Stimulation of the PL projections to the IL speeds up fear | This model.
extinction: Marek et al.| (2018).

Inhibition of the PL projections to the IL impairs early | This model.
extinction: Marek et al.| (2018).

If hippocampus is removed before conditioning, cued fear | [Krasne et al.
extinction becomes context specific: [Wilson et al|(1995)); | (2011);
[Frohardt et al.| (2000); Zelikowsky et al.| (2012) (but see | Moustafa
Extinction can not be acquired if acetylcholine is depleted: | (Carrere _and

|Prado—Alcala et al.| (1994).

(2015).

Partial reinforcement extinction effect: Leonard| (1975); | ILi 1

[Rescorlal (1999). 2016)).

Blockade of endocannabinoids in the whole amygdala | This model;

impaires within-session extinction: [Marsicano et al.|||An 1

(2002); [Kamprath et al.[(2011); Plendl and Wotjak! (2010). | (2013);
Bennett

Blockade of endocannabinoids in the whole amygdala | This model.

impaires between-session extinction: Marsicano et al.|

(]mp; Kamprath et al | qm[); Plendl and Wotjak| qm[)

Blockade of endocannabinoids in CeM reduces within- | This model.

session extinction, but spares between-session extinction:
Kamprath et al.| (2011).
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If endocannabinoids are blocked in BA there is an | This model.

impairment of between- but not within-session extinction:

[Kamprath et al | (2011]).

Emergence of fear neurons: Herry et al. (2008);/Amano| | This model;

etal| 2010). Li etal] (2009
Vlachos
et al.| (2011);

Irer n

(2015);
et al.| (2016);

Emergence of extinction neurons: Milad and Quirk | This model;
(2002); Herry et al| (2008); [Santini et al] (2008); |Amano] | [Li et al.| (2009);
etal} (2010) Viachos ]
et al. (2011);

arrere and

(2015);

et al. (2016);

Emergence of persistent neurons: Repa et al. (2001);

Amano et al.| (2011); |An et al.| (2012); [Trouche et al.|
2013).

This model;
Vlachos et al.
(2011); |Kim
et al.| (2013b));
L1 et al

(2016)).

GABAergic neurons are essential for extinction: [Harris|

Li et al. (2009),

and Westbrook| qmp; Chhatwal et al | (]m This model.
NMDA receptors are required for extinction: Santini etal.|| Li et  al.
(2001); |Suzuki et al.| (2004); [Sotres-Bayon et al[(2007). | (2009).

Fear reinstatement: Rescorla and Heth! (1975); Maren and | This model.
Fear reinstatement is associated with a reduced activity | This model.

in the IL: Hitora-Imamura et al.| (2015)).

Fear reinstatement reverses changes induced by fear | This model.

extinction in mPFC to BA and in BA to the mPFC
connections: [Vouimba and Maroun| (]QTHT[)
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Fear renewal: Maren and Holmes_(2016). Burgos  and
Murillo-
Rodriguez
(2007); Krasne
et al| (2011);
Vlachos

et al. (2011);
Carrere __and
Alexandre
(2015).
Spontaneous recovery of fear: Maren and Holmes (2016). |Li et  al
(2009).
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