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Figure S1. Validation of the parameter estimation procedure using synthetic datasets simulating different
ecological scenarios. We varied model parameters to represent different ecological scenarios and assumed the
time of observation was τ = 1. We assumed initial mixture proportions of the same values as the data used
in the paper. The scenarios simulated with Eqs. 4-5 in the paper, were: 1) competitive exclusion of mutant, 2)
competitive exclusion of wild type, 3) coexistence, 4) bistability. We drew parameters randomly from the ranges: ρ ∈
[0.01, 2], β ∈ [0.01, 2] and competition coefficients: 1) a12 ∈ [0.01, 1], a21 ∈ [1, 2], 2) a12 ∈ [1, 2], a21 ∈ [0.01, 1],
3) a12 ∈ [0.01, 1], a21 ∈ [0.01, 1] and 4) a12 ∈ [1, 2], a21 ∈ [1, 2]. (A) Mean-squared-error (MSE) showing the
quality of model fit across the four scenarios. The boxplots summarize 100 simulations for each scenario, and show
the median, lower and upper quartiles, and the extreme lines reaching the minimum and maximum values excluding
the outliers (shown as dots). (B) Parameter deviation from the true values across the four scenarios. In both the MSE
and mean parameter deviation there are no statistically significant differences between the scenarios. Numerical
investigation was performed in the R software environment (deSolve package and optim function (R Core Team,
2013)).

Table S1. Summary of parameter estimates from nonlinear least squares optimization applying the model to the original data, assuming a different time of
observation in the recipient p1(τ).

Time τ ρ a12 a21 β MSE Equilibrium p∗1
τ = 2 1.0016 0.2494 0.3154 0.9365 0.0221 0.5066
τ = 3 1.0000 0.4758 0.5482 0.8793 0.0223 0.5050
τ = 4 1.0000 0.5958 0.6632 0.8388 0.0225 0.5017
τ = 5 1.0570 0.6693 0.7360 0.7958 0.0226 0.4992
τ = 6 1.0251 0.7325 0.7782 0.8467 0.0226 0.5053
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Figure S2. Illustration of bottleneck effect in the data resampling and model fits for N = 50 and 10
stochastic realizations. The black squares depict the original data, while the circles the re-sampled data accounting
for bottleneck size N in the binomial distribution. The blue lines give model fits to each stochastic realization for this
N . The dashed purple lines give the predicted equilibrium prevalence of strain 1 in the recipient for each realization.

Text S1: Lotka-Volterra Model written in terms of p and N

When substituting N = n1 + n2 and p = n1/N , the model (Eqs. 2-3) becomes explicit in terms of
proportion of strain 1, p(t), and total population size N(t):

dp

dt
= p

[
(r1 − r2)(1− p)−N(1 + p)[c11p− c12(1− p)] +N(1− p)[c22(1− p) + c21p]

]
(S1)

dN

dt
= N

[
pr1 + (1− p)r2 −N [c11p

2 + c22(1− p)2 + (c12 + c21p(1− p)]
]

(S2)

It is clear that N affects p and p affects N in this system, thus it cannot be reduced. With data for
total viral dynamics and fraction of strain 1 over several time points and initial conditions, the six
parameters r1, r2, c11, c12, c21, c22 can be estimated using this version of the model. In case proportion
data only are available, the non-dimensionalization trick in our Eqs. 4-5 can be used, or alternatively the
replicator equation (Nowak and Sigmund, 2004) in 3-dimensions, which is topologically equivalent to the
2-dimensional Lotka-Volterra system (Bomze, 1995).
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Figure S3. Model simulations and fits assuming different bottleneck sizes in the range 10 to 200. We vary
the initial proportion that starts infection in the recipient according to a binomial sampling of the proportion of strain
1 in the donor. For each N we generate 10 stochastic realizations with different x-components of the data (fraction
of strain 1 initiating an infection in the recipient), but same y-observations as in the (McCaw et al., 2011) study.
Fitting the model to such data, we obtain the model fits (blue lines) with specific sets of parameter estimates for each
N . As the bottleneck size increases, there is less variability around the deterministic model prediction and less data
are captured by the spread in the simulations.
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