Supporting Information ## Constructing Cu₇S₄@SiO₂/DOX multifunctional nanoplatforms for synergistic photothermal-chemo therapy on melanoma tumors Leilei Zhang,^{1,2} Hui Pan,^{1,2} Yongyun Li,^{1,2} Fang Li,^{1,2} Xiaolin Huang^{1,2}* ¹ Department of Ophthalmology, Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China ² Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China. *Correspondence: Xiaolin Huang, Email: drmaureenhuang@163.com. Figure S1. The size (a) and zeta potential (b) of CuS, CuS/CTAB and CuS@mSiO2-PEG nanoparticles. Figure S2. FTIR spectra of CuS@SiO₂-PEG. The sample shows a broad band at 3432 cm⁻¹ due to OH stretching; the band at 2931 cm⁻¹ are corresponding to CH₂ symmetric stretching, respectively; the band at 1635 cm⁻¹ are assigned to C=O symmetric stretching; the band at 1471 cm⁻¹ corresponds to CH₂ scissoring vibrations; In addition, the band at 1082 cm⁻¹ is contributed to C-O stretching vibration coordinating to metal cations. These results indicated that the surface polymer coated on CuS@SiO₂ was PEG. **Figure S3**. Dynamic light scattering (DLS) data of as-prepared (blue line) and stored (in water for 7 days) $Cu_7S_4@SiO_2$ core-shell nanoparticles. Figure S4. XPS spectra of Cu 2p in the $Cu_7S_4@SiO_2$ nanoparticles. Figure S5. The Cu²⁺ release of Cu₇S₄@SiO₂ nanoparticles (2 mg/mL) in PBS. Figure S6. H&E stained slices of main organs. Magnification: 200 times.