Supplementary Table

Table S1 333 up-regulated and 93 down-regulated genes were identified from TCGA-STAD,GSE65801, GSE54129 and GSE118916

DEGs	Gene Name
	CXCR4, MMP7, CDC25B, SLCO2B1, COL1A1, CST7, SELL, PLEKHG4, FNDC1,
	SAMSN1COL18A1, FUS, ASS1, CD53, TFEC, BICD1, DUSP10, CR1, FPR1,
	ARHGDIB, F2RL2, LRRC32, ALOX5AP, SH3PXD2B, ITGBL1, CPXM1, LRP8,
	COMP, WISP1, SLC15A3, ADORA2B, SLFN11, ADAP2, SULF1, SLC39A10,
	RARRES1, IGSF6, COL11A1, TREM1, GBP5, SERPINA3, C1QC, SH3RF3,
	GPNMB, CD55, FZD2, TNFRSF11B, IGFBP7, LTBP2, MAP3K8, HLA_DMB,
	EGFLAM, IER5L, TNFRSF12A, DFNA5, PDPN, COL3A1, PECAM1, IFITM3,
	CCR1, SERPINE2, NOD1, CCL8, GPR34, SLC20A1, AEBP1, PCDHB16, CXCL1,
	FAM43A, HSPH1, SIGLEC7, FJX1, PHTF2, SLC7A6, IGF1, PRR16, SERPINB9,
	LAIR1, C3, PIK3AP1, DLGAP4, FN1, IF116, RASSF4, CTSB, ATP8B4, SPP1,
	CTSK, LST1, CDK4, MXRA5, RASGEF1A, GXYLT2, RGS1, PLXND1, PTPRC, SDS,
	CNN2, COL4A2, LUM, HHEX, THBS4, FSCN1, SRPX2, CLEC7A, CYBB, NID2,
	PDE4B, LCP2, GLS, EMILIN2, LOX, IL32, LCP1, CLDN1, FCER1, ELK3, IFITM1,
	HAVCR2, TMEM176B, MCTP1, DPYSL2, FPR3, NRP1, PLEK, TMEM45A,
	PLA2G2A, PLXNC1, MNDA, CPNE2, SLC19A3, MYOF, PCDHB2, NOX4, SFRP4,
	GRB14, CCDC8, ENG, TYROBP, TMEM158, DAB2, SERPINH1, IL2RA, FAP,
	TNFSF4, INHBA, CALU, TNFSF13B, TMEM173, MDK, CALCRL, ICAM1, THBS2,
Un	ETS1, SERPINE1, LY6E, CSF2RA, COL10A1, BCAT1, TGFBI, C5AR1, APOE,
op -	TUBB, TM6SF1, CMTM3, OSR2, SFRP2, TNFAIP6, KIAA0226L, ADCY3, SLA,
regulateu	CPVL, PI15, CD83, SULF2, CD93, PODXL, CDH11, BGN, COCH, TNFAIP3,
	ASPN, CCL18, TREM2, THSD7A, CXCL2, CHRDL2, HOXC10, MCM2, CETP,
	CXCL10, VCAN, AJUBA, FPR2, COL1A2, C1orf162, COL12A1, ESM1, RCN3,
	TRIO, CHSY1, PTPN12, MXRA8, FAS, OSMR, CCT2, SLCO3A1, NCF2, CST1,
	SNX10, CLDN7, MS4A6A, IFITM2, GJA4, FKBP10, DDAH2, C10orf10, GREM1,
	BUB1, CD163, GPR65, BST2, FAM198B, HOXC9, FADS3, TNFRSF10B, HIF1A,
	C1QB, S100A10, TLR4, GLIPR1, COL6A3, PLEKHA4, CLEC4A, TDO2, SPARC,
	COL5A1, CTHRC1, PLXDC1, E2F3, FGD6, TPX2, LILRB2, IGF2BP3, ANP32E,
	LAMP3, P4HA3, FYB, MAPRE1, KDELC1, CHI3L1, LOXL1, PRRX1, HCK,
	ASAP1, COL5A2, THY1, TMEM176A, CD200, MSR1, TIMP1, MRC1, NNMT,
	BCL2A1, ECT2, CD14, TRIP6, CDH3, PGF, WNT2, CSGALNACT1, GBP1, C2,
	ARPC1B, PLA2G7, MFAP2, COL16A1, GPX8, PCDH17, COL4A1, ALDH1A3,
	ENTPD1, CPNE1, HAPLN3, CTSA, TLR2, AMIGO2, MYO1B, PLAU, CDH13,
	RNASE6, TGM2, RFTN1, COL15A1, LILRB4, FOXC1, ABCA1, ADAMTS9, RAI14,
	HOXB3, APLNR, IL13RA2, HLA_DPA1, LTB, FMO1, FBN1, INHBB, S100A11,
	ANGPT2, CPNE8, ST3GAL2, SACS, S100A4, EPB41L2, PLXDC2, HOMER1,
	CXCL9, MARCH1, OLFML2B, VCAM1, PPFIA1, LAPTM5, FSTL3, PMEPA1,
	HOXC6, HES4, NPL, CP, VAV1, MMP9, SLC39A6, CTSC
Deres	MAOA, PMM1, GKN1, ACADL, ENHO, NRG4, KLF4, MICALL1, TNFRSF17,
DOWN -	CYP4F12, SCNN1B, ZBTB7C, GGT6, UBE2QL1, MT1E, ANXA10, GIF, NME5,
regulated	GDPD2, SOSTDC1, FAM46C, SH3GL2, CKMT2, KCNJ16, GKN2, AKR1B10,

PTPRZ1, ATP4A, UGT2B15, MAL, ESRRG, AMPD1, TFF2, MT1X, SPINK2, LIPF, CAPN13, CYP2C18, FUT9, C16orf89, PGC, AKR1C3, SELENBP1, CBR1, NTPD3, AKR7A3, FAM3B, ADH1C, PLCXD3, CWH43, GPT, CXCL17, NR3C2, KRT20, RNASE1, MYZAP, AKR1C1, VSIG2, SCNN1G, PSAPL1, PSCA, SPTSSB, TFF1, DERL3, LDHD, FBP2, AADAC, FAM150B, SCIN, CAPN9, VILL, ADH7, CCKBR, ADRB2, HPGD, SCGB2A1, GUCA2B, ETFDH, LIFR, ALDH3A1, RDH12, CA2, LTF, GSTA3, MFSD4, SSTR1, PAIP2B, KCNE2, SIGLEC11, ALDOB, TM6SF2, KCNJ15, SULT1B1

	Category	Term	Count	-log10(PValue)	
	מת	GO:0030198~extracellular matrix	01	20.64	
	BP	organization	21	29.64	
	BP	GO:0030574~collagen catabolic process	13	20.61	
	BP	GO:0030199~collagen fibril organization	10	16.31	
	BP	GO:0007155~cell adhesion	12	8.88	
	BP	GO:0050900~leukocyte migration	8	8.29	
	CC	GO:0031012~extracellular matrix	19	22.89	
	CC	GO:0005788~endoplasmic reticulum	16	20.47	
	tt	lumen	10	20.47	
	CC	GO:0005581~collagen trimer	13	19.01	
Module 1	CC	GO:0005576~extracellular region	26	18.55	
	CC	GO:0005578~proteinaceous extracellular	16	18 27	
	tt	matrix	10	18.27	
	ME	GO:0005201~extracellular matrix	12	18 20	
	MF	structural constituent	12	18.20	
	MF	GO:0048407~platelet-derived growth	5	8 20	
		factor binding	5	8.50	
	MF	GO:0005518~collagen binding	6	6.84	
	MF	GO:0005178~integrin binding	6	5.63	
	ME	GO:0050840~extracellular matrix	4	4 69	
	IVII	binding	4	4.09	
	BP	GO:0006955~immune response	9	5.62	
	BP	GO:0007165~signal transduction	13	5.53	
	BP	GO:0006968~cellular defense response	4	3.50	
	BP	GO:0001666~response to hypoxia	5	3.31	
	RD	GO:0022617~extracellular matrix	4	3.24	
	DI	disassembly	+	5.24	
	CC	GO:0005615~extracellular space	17	8.68	
	CC	GO:0009986~cell surface	11	7.07	
	CC	GO:0005576~extracellular region	15	5.84	
Module 2	CC	GO:0005887~integral component of	11	3 /1	
	tt	plasma membrane	11	5.41	
	CC	GO:0005925~focal adhesion	5	2.10	
	MF	GO:0005515~protein binding	33	5.53	
	MF	GO:0004888~transmembrane signaling	5	2 97	
	1411.	receptor activity	5	2.71	
	MF	GO:0004252~serine-type endopeptidase	5	2 69	
	1411.	activity	5	2.09	
	MF	GO:0005102~receptor binding	5	2.18	
	MF	GO:0004872~receptor activity	4	1.96	
Module 3	BP	GO:0006954~inflammatory response	9	7.32	

Table S2 GO term enrichment analysis of hub modules from PPI network in gastric cancer

ЪD	GO:0032496~response to	6	5 42
Dr	lipopolysaccharide	0	5.42
ЪD	GO:0030198~extracellular matrix	6	5.04
Dr	organization	0	5.04
BP	GO:0007155~cell adhesion	7	4.34
BP	GO:0060326~cell chemotaxis	4	3.92
CC	GO:0009897~external side of plasma	0	7 71
tt	membrane	0	7.71
CC	GO:0005615~extracellular space	13	6.81
CC	GO:0005886~plasma membrane	17	4.36
CC	GO:0005576~extracellular region	11	4.23
CC	GO:0031012~extracellular matrix	5	3.05
MF	GO:0002020~protease binding	5	4.93
MF	GO:0008201~heparin binding	4	2.84
MF	GO:0005125~cytokine activity	4	2.72
MF	GO:0008009~chemokine activity	3	2.66
MF	GO:0005515~protein binding	20	2.23

Gene	NT 1	Rank	Fold	Gene		Rank	Fold
Rank	Node	Score	Change	Rank	Node	Score	Change
1	FN1	25	1.91	14	CXCL1	16	1.91
2	MMP9	24	5.01	17	CYBB	15	5.01
2	TLR4	24	1.97	17	LOX	15	1.97
4	PTPRC	23	1.97	19	CD163	13	1.97
4	VCAM1	23	2.35	19	CIQB	13	2.35
6	TLR2	22	3.51	19	LCP2	13	3.51
7	ICAM1	21	3.07	19	PLEK	13	3.07
7	SPP1	21	23.95	19	<i>C3</i>	13	23.95
7	CCR1	21	2.74	19	BGN	13	2.74
10	PECAM1	20	1.50	25	COL1A1	12	1.50
11	TIMP1	19	4.23	25	TYROBP	12	4.23
11	CXCR4	19	1.82	27	LILRB2	11	1.82
13	SELL	17	2.03	28	COL1A2	10	2.03
14	IGF1	16	1.83	28	COL3A1	10	1.83
14	CXCL10	16	13.14	28	FBN1	10	13.14

Table S3 Top 30 nodes in PPI network by Degree method

Table S4 Edges in PPI network by Degree method								
Node1	Node2	Score	Node1	Node2	Score	Node1	Node2	Score
COL1A2	COL1A1	0.999	VCAM1	SELL	0.744	CXCL10	TIMP1	0.568
MMP9	TIMP1	0.997	COL3A1	LOX	0.743	VCAM1	TIMP1	0.568
COL3A1	COL1A2	0.995	MMP9	CAM1	0.737	MMP9	CD163	0.566
COL3A1	COLIA1	0.994	CXCL10	TLR2	0.734	LILRB2	PLEK	0.562
PTPRC	CXCR4	0.99	MMP9	COL1A1	0.733	VCAM1	PLEK	0.562
FN1	FBN1	0.989	CXCL10	ICAM1	0.732	CXCR4	IGF1	0.561
CXCL1	CL10	0.987	SPP1	IGF1	0.732	PECAM1	SPP1	0.56
CXCL1	MMP9	0.983	CXCR4	TLR2	0.723	VCAM1	TLR2	0.56
TLR4	BGN	0.981	PTPRC	TLR4	0.72	MMP9	COL3A1	0.558
SPP1	TIMP1	0.978	SPP1	ICAM1	0.719	CXCR4	SPP1	0.556
SPP1	FN1	0.977	LILRR2	CD163	0.717	CXCL1	FN1	0.555
TYRORP	ICP2	0.977	CXCR4	SELL	0.714	SELI	ICP2	0.555
CYCL10	CCR1	0.977		TIMP1	0.713	CCRI	SELL	0.553
EN1		0.972	CCP1		0.713	EN1	SELL	0.553
		0.972		LCI Z	0.707			0.555
	LCF2	0.909	PECAMI	SELL	0.703	LILKD2	CVCL1	0.555
	IGFI	0.968		ICAMI COL 142	0.702	CVDD	CACLI	0.552
FNI	C3	0.966		COLIA2	0.701	CYBB	CCRI	0.546
CXCR4	CXCLIO	0.965	PTPRC	CD163	0.699	CCRI	VCAMI	0.545
CXCR4	CXCLI	0.964	MMP9	VCAMI	0.696	VCAMI	LCP2	0.544
CXCLI	CCR1	0.96	PECAMI	MMP9	0.696	TLR2	<i>C3</i>	0.541
BGN	TLR2	0.955	SPP1	COL1A1	0.693	TLR4	<i>C3</i>	0.541
CYBB	VCAM1	0.954	CCR1	ICAM1	0.692	LILRB2	LCP2	0.54
FBN1	COL3A1	0.953	PECAM1	TLR4	0.689	SPP1	COL1A2	0.539
IGF1	TIMP1	0.953	CXCL10	VCAM1	0.687	BGN	ICAM1	0.538
LILRB2	CYBB	0.944	CXCR4	VCAM1	0.687	FN1	CIQB	0.524
PECAM1	PTPRC	0.941	TLR4	VCAM1	0.687	CYBB	CIQB	0.514
VCAM1	ICAM1	0.94	ICAM1	TLR2	0.685	CYBB	LCP2	0.511
FBN1	TIMP1	0.939	IGF1	ICAM1	0.684	IGF1	COL1A1	0.509
CXCL1	С3	0.931	CXCR4	FN1	0.683	PECAM1	TIMP1	0.509
CXCL10	С3	0.931	PTPRC	TLR2	0.682	CXCL1	SELL	0.504
SPP1	С3	0.93	MMP9	COL1A2	0.68	TYROBP	SELL	0.503
LILRB2	TYROBP	0.926	COL1A2	TIMP1	0.677	ICAM1	С3	0.502
SPP1	FBN1	0.926	PTPRC	CCR1	0.676	CXCL1	SPP1	0.501
<i>C3</i>	TIMP1	0.921	TLR4	IGF1	0.674	MMP9	SELL	0.501
CXCR4	<i>C3</i>	0.921	BGN	FBN1	0.67	IGF1	VCAM1	0.494
CXCR4	CCR1	0.921	CXCR4	ICAM1	0.664	CIQB	С3	0.487
FBN1	COL1A2	0.921	CYBB	TLR2	0.661	MMP9	BGN	0.487
CCR1	С3	0.914	COL3A1	TIMP1	0.658	IGF1	PLEK	0.481
PTPRC	SELL	0.912	CXCL1	VCAM1	0.658	PECAM1	LOX	0.48
FBN1	С3	0.906	TLR4	FN1	0.648	TLR4	TIMP1	0.474
CYBB	MMP9	0.903	TLR4	PLEK	0.647	MMP9	FBN1	0.472
TLR4	TLR2	0.902	PTPRC	TYROBP	0.644	SELL	PLEK	0.472
FN1	LOX	0.898	PTPRC	CYBB	0.642	CCR1	PLEK	0.47
FN1	COLIA2	0.893	SPP1	CCR1	0.641	PECAM1	CXCL10	0.469
BGN	COLIA2	0.891	TLR4	CIOR	0.641	CYBB	FN1	0.468
CIOR	TYRORP	0.89	PECAM1	CD163	0.636	CIOB	CCR1	0.467
2120		5.07		22100	0.000	2120		0.107

BGN	COL1A1	0.873	TLR4	CD163	0.636	PECAM1	COL1A1	0.466
PLEK	LCP2	0.871	TLR4	TYROBP	0.628	CD163	VCAM1	0.464
PTPRC	VCAM1	0.871	TLR2	SELL	0.627	SPP1	TLR4	0.459
FN1	COL1A1	0.869	СҮВВ	PLEK	0.625	IGF1	LOX	0.458
CD163	CIQB	0.85	MMP9	IGF1	0.621	SPP1	LOX	0.458
FN1	COL3A1	0.848	CXCL1	TIMP1	0.62	VCAM1	LOX	0.457
TLR4	CXCL10	0.84	PECAM1	LCP2	0.62	CD163	CCR1	0.456
TLR4	ICAM1	0.836	ICAM1	TIMP1	0.619	CD163	ICAM1	0.455
FBN1	COL1A1	0.835	TLR4	LCP2	0.619	PECAM1	CYBB	0.453
TYROBP	TLR2	0.835	PTPRC	CXCL10	0.617	CXCR4	CD163	0.451
TLR4	MMP9	0.834	TLR4	SELL	0.617	SPP1	CXCL10	0.451
CD163	TYROBP	0.827	PTPRC	LILRB2	0.61	CYBB	SELL	0.45
LILRB2	TLR2	0.822	PTPRC	CXCL1	0.609	ICAM1	LCP2	0.45
FBN1	LOX	0.82	CCR1	TYROBP	0.602	FN1	CXCL10	0.448
LOX	COL1A1	0.82	CXCR4	TLR4	0.602	PECAM1	TLR2	0.446
CYBB	TLR4	0.819	SPP1	BGN	0.602	TLR2	PLEK	0.446
FN1	ICAM1	0.819	MMP9	FN1	0.599	PTPRC	COL1A1	0.444
PECAM1	VCAM1	0.818	PECAM1	IGF1	0.599	CXCR4	IMP1	0.44
SPP1	MMP9	0.818	CD163	CXCL10	0.598	SPP1	TLR2	0.44
CXCL1	TLR2	0.816	SPP1	VCAM1	0.598	TLR2	TIMP1	0.439
FN1	BGN	0.807	CYBB	TYROBP	0.595	MMP9	TYROBP	0.438
ICAM1	SELL	0.804	CIQB	PLEK	0.593	FN1	PLEK	0.429
MMP9	TLR2	0.799	CIQB	LCP2	0.592	LILRB2	TLR4	0.429
BGN	COL3A1	0.798	CIQB	VCAM1	0.592	CXCR4	LOX	0.428
PECAM1	ICAM1	0.798	LOX	TIMP1	0.583	PECAM1	CCR1	0.426
PTPRC	PLEK	0.791	MMP9	CCR1	0.58	CIQB	TLR2	0.425
PECAM1	CXCR4	0.785	FN1	TLR2	0.579	COL3A1	VCAM1	0.425
CD163	TLR2	0.784	MMP9	LOX	0.579	ICAM1	LOX	0.421
TYROBP	PLEK	0.781	PTPRC	CIQB	0.579	FN1	CCR1	0.415
CXCR4	MMP9	0.78	PTPRC	SPP1	0.577	BGN	IGF1	0.411
TLR4	CCR1	0.772	CXCL10	SELL	0.576	SPP1	COL3A1	0.411
MMP9	CXCL10	0.769	LILRB2	CIQB	0.576	CXCR4	LCP2	0.41
PTPRC	FN1	0.768	BGN	LOX	0.575	CXCL1	IGF1	0.409
COL1A2	LOX	0.766	PTPRC	IGF1	0.575	LILRB2	SELL	0.403
CXCL1	TLR4	0.76	CYBB	ICAM1	0.57	VCAM1	С3	0.403
PECAM1	FN1	0.759	PTPRC	MMP9	0.57	PTPRC	LOX	0.401
CXCL1	CAM1	0.757	BGN	TIMP1	0.568			
FN1	VCAM1	0.75	CCR1	TLR2	0.568			

-

Gene	Nada	Rank	Fold	Gene	Nada	Rank	Fold
Rank	Node	Score	Change	Rank	Node	Score	Change
1	CD53	23	1.85	16	LCP1	15	2.13
1	LILRB4	23	4.61	17	IFI16	14	1.71
1	SIGLEC7	23	3.09	17	RGS1	14	1.83
4	MS4A6A	19	1.83	17	SLCO2B1	14	2.14
4	MSR1	19	6.02	17	TYROBP	14	2.04
6	CCR1	18	2.74	21	CIQC	13	2.08
7	CYBB	17	2.66	21	CLEC7A	13	2.52
7	LAIR1	17	2.48	21	GBP1	13	2.71
7	SAMSN1	17	2.19	21	НСК	13	2.05
10	CIQB	16	2.14	21	PLA2G7	13	7.61
10	FPR3	16	3.49	21	TM6SF1	13	1.63
10	GPR65	16	1.99	21	TNFSF13B	13	2.71
10	HAVCR2	16	4.21	28	LCP2	12	2.55
10	IL2RA	16	3.68	28	SLA	12	2.18
10	PTPRC	16	1.97	28	TREM2	12	11.85

Table S5 Top 30 Nodes in WGCNA Network by Degree method

Table S6 Edges in WGCNA Network by Degree method

		Table	50 Euges III wC	JUNA Networ	k by Degree	e method		
Node1	Node2	Score	Node1	Node2	Score	Node1	Node2	Score
LCP1	SLA	0.475	MS4A6A	LILRB4	0.270	LCP2	MS4A6A	0.229
CD53	LCP1	0.373	IL2RA	SIGLEC7	0.270	TNFSF13B	CIQB	0.229
CD53	SLA	0.367	CIQC	LILRB4	0.270	CD53	SAMSN1	0.229
CD53	PTPRC	0.342	CIQB	CYBB	0.269	TYROBP	LILRB4	0.228
LCP1	PTPRC	0.338	MS4A6A	CYBB	0.269	CIQB	PLA2G7	0.228
CIQB	HAVCR2	0.333	CIQC	TREM2	0.269	SLCO2B1	CYBB	0.228
HAVCR2	LILRB4	0.330	CIQB	LILRB4	0.268	SLCO2B1	HAVCR2	0.228
CIQC	LAIR1	0.328	LAIR1	CYBB	0.268	LCP2	PLA2G7	0.227
CIQB	LAIR1	0.328	IL2RA	LAIR1	0.268	TYROBP	CYBB	0.227
CIQC	HAVCR2	0.325	TNFSF13B	LAIR1	0.268	LCP2	CCR1	0.227
CIQB	SIGLEC7	0.318	MS4A6A	CCR1	0.267	LCP2	IL2RA	0.225
PLA2G7	HAVCR2	0.318	GPR65	CYBB	0.267	CIQC	PLA2G7	0.224
CIQC	SIGLEC7	0.317	CLEC7A	CYBB	0.267	HCK	CCR1	0.223
PLA2G7	FPR3	0.314	CYBB	MSR1	0.265	FPR3	TM6SF1	0.223
TYROBP	LAIR1	0.312	TREM2	HAVCR2	0.265	TNFSF13B	CIQC	0.223
SIGLEC7	LILRB4	0.312	PLA2G7	MS4A6A	0.263	CLEC7A	SIGLEC7	0.222
FPR3	CCR1	0.312	TYROBP	FPR3	0.263	IL2RA	CIQB	0.221
C1QB	CIQC	0.311	TNFSF13B	FPR3	0.262	LCP2	LILRB4	0.220
SLA	PTPRC	0.310	TNFSF13B	CYBB	0.262	HCK	CIQC	0.220
LAIR1	LILRB4	0.309	TREM2	MS4A6A	0.262	HCK	PLA2G7	0.220
HAVCR2	CCR1	0.307	CIQC	CYBB	0.261	CLEC7A	LAIR1	0.220
SIGLEC7	HAVCR2	0.307	LCP2	CYBB	0.261	HCK	CIQB	0.219
FPR3	MSR1	0.306	RGS1	CD53	0.260	CLEC7A	SAMSN1	0.217
SIGLEC7	FPR3	0.304	LCP2	FPR3	0.260	IL2RA	CIQC	0.215
HAVCR2	FPR3	0.304	LCP2	HAVCR2	0.257	RGS1	CYBB	0.215
FPR3	LILRB4	0.304	GPR65	FPR3	0.257	TM6SF1	MS4A6A	0.215
IL2RA	HAVCR2	0.303	PLA2G7	CCR1	0.256	LAIR1	TM6SF1	0.214
TYROBP	CIQC	0.303	CIQB	TREM2	0.255	HCK	MS4A6A	0.214
SIGLEC7	LAIR1	0.302	GPR65	LAIR1	0.255	RGS1	SLA	0.214
FPR3	MS4A6A	0.298	TNFSF13B	MS4A6A	0.254	CD53	GPR65	0.211
LAIR1	MS4A6A	0.298	LILRB4	CCR1	0.253	LCP2	GPR65	0.211
PLA2G7	CYBB	0.298	TREM2	FPR3	0.252	HCK	IL2RA	0.211
TYROBP	SIGLEC7	0.298	HCK	HAVCR2	0.250	IFI16	CYBB	0.210
SIGLEC7	CCR1	0.297	GPR65	MS4A6A	0.249	CLEC7A	MS4A6A	0.209
SIGLEC7	PLA2G7	0.296	SLCO2B1	FPR3	0.248	CLEC7A	CD53	0.208
CIQB	FPR3	0.296	CLEC7A	HAVCR2	0.247	PLA2G7	MSR1	0.207
HAVCR2	LAIR1	0.295	HAVCR2	GPR65	0.247	PTPRC	CYBB	0.207
TYROBP	CIQB	0.294	CLEC7A	FPR3	0.246	GBP1	CYBB	0.207
TYROBP	HAVCR2	0.294	LCP2	LAIR1	0.246	CLEC7A	PLA2G7	0.207
HAVCR2	MS4A6A	0.293	TYROBP	TREM2	0.246	TYROBP	CCR1	0.206
CIQB	MS4A6A	0.292	CYBB	SAMSN1	0.246	CLEC7A	LCP2	0.205
CIQC	FPR3	0.290	HCK	FPR3	0.245	TNFSF13B	LILRB4	0.205
TREM2	LAIR1	0.290	НСК	SIGLEC7	0.245	HAVCR2	SAMSN1	0.205
CIQC	MS4A6A	0.289	IL2RA	MS4A6A	0.245	TM6SF1	MSR1	0.204
CYBB	LILRB4	0.288	TNFSF13B	SIGLEC7	0.244	GPR65	PTPRC	0.204
TNFSF13B	HAVCR2	0.287	CD53	CYBB	0.244	TREM2	CYBB	0.203
HAVCR2	CYBB	0.286	SLCO2B1	LAIR1	0.244	LCP2	CIQB	0.202

IL2RA	FPR3	0.285	НСК	LAIR1	0.243	TYROBP	HCK	0.202
HAVCR2	MSR1	0.285	НСК	CYBB	0.241	LCP2	НСК	0.202
LAIR1	CCR1	0.285	LCP2	SIGLEC7	0.241	TNFSF13B	GPR65	0.202
FPR3	CYBB	0.284	IL2RA	CCR1	0.239	GPR65	MSR1	0.202
SIGLEC7	MS4A6A	0.284	CIQB	CCR1	0.238	CLEC7A	LCP1	0.202
FPR3	LAIR1	0.284	PLA2G7	LILRB4	0.236	FPR3	SAMSN1	0.202
IL2RA	CYBB	0.283	MSR1	CCR1	0.236	TREM2	LILRB4	0.201
CYBB	CCR1	0.283	HAVCR2	GBP1	0.235	LCP2	TNFSF13B	0.201
SIGLEC7	TREM2	0.282	RGS1	LCP1	0.235	IFI16	HAVCR2	0.201
TYROBP	MS4A6A	0.279	CIQC	CCR1	0.234	LCP2	MSR1	0.201
SIGLEC7	MSR1	0.279	IL2RA	LILRB4	0.233	IL2RA	PLA2G7	0.201
PLA2G7	LAIR1	0.278	НСК	LILRB4	0.232	TNFSF13B	CCR1	0.201
LAIR1	MSR1	0.274	SLCO2B1	MS4A6A	0.231	GPR65	CCR1	0.201
SIGLEC7	CYBB	0.274	SIGLEC7	GPR65	0.231	CLEC7A	HCK	0.200
MS4A6A	MSR1	0.273	SLCO2B1	SIGLEC7	0.231	SIGLEC7	TM6SF1	0.200

Gene	Gene ID*	Gene function Summary	Representative studies associated with
name			cancer
Common hu	b genes in Pl	PI and WGCNA networks	
TYROBP	7305	This gene encodes a transmembrane signaling polypeptide which contains an immunoreceptor tyrosine-based activation motif (ITAM) in its cytoplasmic domain. The encoded protein may associate with the killer-cell inhibitory receptor (KIR) family of membrane glycoproteins and may act as an activating signal transduction element.	Shabo, et al. found TYROBP overexpression was associated with skeletal and liver metastasis in patients with breast cancer[1]. Takamiya, et al. found TYROBP was mediated at the interaction between tumor associated macrophages and cancer cells and contributed to tumor progression in lung cancer[2].
CIQB	713	This gene encodes the B-chain polypeptide of serum complement subcomponent C1q, which associates with C1r and C1s to yield the first component of the serum complement system. C1q is composed of 18 polypeptide chains which include 6 A-chains, 6 B-chains, and 6 C-chains.	Luo, et al. found altered expression of C1QB in blood could be identified as a biomarker for early melanoma[3].
PTPRC	5788	The protein encoded by this gene is a member of the protein tyrosine phosphatase (PTP) family. PTPs are known to be signaling molecules that regulate a variety of cellular processes including cell growth, differentiation, mitosis, and oncogenic transformation.	Ju, et al. reported that PTPRC polymorphism was associated with susceptibility to diffuse-type gastric cancer and gene expression [4]. Ahmadvand, et al. found PTPRC ⁺ TILs served as a negative predictor for OS and PFS of breast cancer patients[5].
LCP2	3937	This gene encodes an adapter protein that acts as a substrate of the T cell antigen receptor (TCR)-activated protein tyrosine kinase pathway. The encoded protein associates with growth factor receptor bound protein 2, and is thought to play a role TCR-mediated intracellular signal transduction.	Chu, et al identified LCP2 as one of the DEGs which contributed to liver metastasis of colon cancer[6].
CYBB	1536	Cytochrome b (-245) is composed of cytochrome b alpha (CYBA) and beta (CYBB) chain. It has been proposed as a primary component of the microbicidal oxidase system of phagocytes. CYBB deficiency is one of five described biochemical defects associated with chronic granulomatous disease (CGD).	Wang, et al identified that CYBB as a new biomarker and a potential therapeutic target for gastric cancer [7]. Zhang, et al. identified CYBB as one of the hub genes in hypoxia networks in ovarian cancer via bioinformatics analysis[8].
CCR1	1230	This gene encodes a member of the beta chemokine receptor family, which is predicted to be a seven transmembrane protein similar to G protein-coupled receptors. The ligands of this receptor include macrophage inflammatory protein 1 alpha (MIP-1 alpha), regulated on activation normal T expressed and secreted protein (RANTES), monocyte chemoattractant protein 3 (MCP-3), and myeloid progenitor inhibitory factor-1 (MPIF-1).	Itatani, et al. found that CCR1+ myeloid cells promoted tumor invasion and liver metastasis in colorectal cancer [9]. Sugasawa, et al found that gastric cancer cells showed positive expression of CCR1 [10].
Other hub go	enes in PPI n	etwork	
LOX	4015	This gene encodes a member of the lysyl oxidase family of proteins. Alternative splicing results in multiple transcript variants, at least one of which encodes a preproprotein that is proteolytically processed to generate a regulatory propeptide and the mature enzyme.	Zhao, et al reported that LOX inhibition downregulated MMP-2 and MMP-9 in gastric cancer tissues and cells [11].
COL3A1	1281	This gene encodes the pro-alpha1 chains of type III collagen, a fibrillar collagen that is	Liu, et al. identified COL3A1 as one of the hub

Table S7 Biological functions and cancer relations of hub genes in PPI and WGCNA networks

		found in extensible connective tissues such as skin, lung, uterus, intestine and the vascular system, frequently in association with type I collagen.	genes correlated with the pathogenesis of gastric cancer based on bioinformatics analysis[12].
FN1	2335	This gene encodes fibronectin, a glycoprotein present in a soluble dimeric form in plasma, and in a dimeric or multimeric form at the cell surface and in extracellular matrix. The encoded preproprotein is proteolytically processed to generate the mature protein.	Wang, et al. found that microRNA-432 targeting FN1 inhibited cell proliferation and invasion of cervical cancer[13].
FBN1	2200	This gene encodes a member of the fibrillin family of proteins. The encoded preproprotein is proteolytically processed to generate two proteins including the extracellular matrix component fibrillin-1 and the protein hormone asprosin. Fibrillin-1 is an extracellular matrix glycoprotein that serves as a structural component of calcium-binding microfibrils.	Shi, et al. found that FBN1 as a potential biomarker of progression and prognosis in bladder cancer[14]. Yang, et al reported that MiR-133b inhibited the proliferative, migratory and invasive abilities of GC cells by increasing FBN1 expression [15].
CXCR4	7852	This gene encodes a CXC chemokine receptor specific for stromal cell-derived factor-1. The protein has 7 transmembrane regions and is located on the cell surface. It acts with the CD4 protein to support HIV entry into cells and is also highly expressed in breast cancer cells.	Lzumi, et al. found that the inhibition of CXCL12/CXCR4 signaling in GC cells may be a promising therapeutic strategy against GC cell invasion [16].
PECAM1	5175	The protein encoded by this gene is found on the surface of platelets, monocytes, neutrophils, and some types of T-cells, and makes up a large portion of endothelial cell intercellular junctions. The encoded protein is a member of the immunoglobulin superfamily and is likely involved in leukocyte migration, angiogenesis, and integrin activation.	Terashima, et al. reported that PECAM1 was associated with hematogenous, lymph Node, and peritoneal recurrence in stage II/III gastric cancer patients enrolled in the ACTS-GC Study[17].
BGN	633	This gene encodes a member of the small leucine-rich proteoglycan (SLRP) family of proteins. The encoded preproprotein is proteolytically processed to generate the mature protein, which plays a role in bone growth, muscle development and regeneration, and collagen fibril assembly in multiple tissues.	Sun, et al. identified BGN as one of the core genes associated with tumor metastasis in gastric cancer[18].
IGF1	3479	The protein encoded by this gene is similar to insulin in function and structure and is a member of a family of proteins involved in mediating growth and development. The encoded protein is processed from a precursor, bound by a specific receptor, and secreted. Defects in this gene are a cause of insulin-like growth factor I deficiency.	Du, et al found that IGF1 was upregulated to promote gastric cancer metastasis [19].
TLR2	7097	The protein encoded by this gene is a member of the Toll-like receptor (TLR) family which plays a fundamental role in pathogen recognition and activation of innate immunity. This protein is a cell-surface protein that can form heterodimers with other TLR family members to recognize conserved molecules derived from microorganisms known as pathogen-associated molecular patterns (PAMPs).	West, et al. identified a TLR2-regulated gene signature as a predictor of poor outcomes in patients with gastric cancer [20].
COL1A2	1278	This gene encodes the pro-alpha2 chain of type I collagen whose triple helix comprises two alpha1 chains and one alpha2 chain. Type I is a fibril-forming collagen found in most connective tissues and is abundant in bone, cornea, dermis and tendon.	Li, et al. identified COL1A2 as a candidate prognostic factor in gastric cancer[21]. Ao, et al. found that silencing of COL1A2 inhibited gastric cancer cell proliferation, migration and invasion[22].
VCAM1	7412	This gene is a member of the Ig superfamily and encodes a cell surface sialoglycoprotein expressed by cytokine-activated endothelium. This type I membrane protein mediates leukocyte-endothelial cell adhesion and signal transduction, and may play a role in the development of artherosclerosis and rheumatoid arthritis.	Shen, et al. found that cancer-associated fibroblasts-derived VCAM1 facilitated tumor invasion in gastric cancer [23].
COL1A1	1277	This gene encodes the pro-alpha1 chains of type I collagen whose triple helix comprises two alpha1 chains and one alpha2 chain. Type I is a fibril-forming collagen found in most	Liu, et al. identified COL1A1 as one of the genes in prognostic signature of gastric cancer [24].

		connective tissues and is abundant in bone, cornea, dermis and tendon.	Wang, et al. found that miR-129-5p suppresses gastric cancer cell invasion by inhibiting COL1A1[25].
SELL	6402	This gene encodes a cell surface adhesion molecule that belongs to a family of adhesion/homing receptors. The encoded protein contains a C-type lectin-like domain, a calcium-binding epidermal growth factor-like domain, and two short complement-like repeats. The gene product is required for binding and subsequent rolling of leucocytes on endothelial cells, facilitating their migration into secondary lymphoid organs and inflammation sites.	Few studies were reported
С3	718	Its activation is required for both classical and alternative complement activation pathways. The encoded preproprotein is proteolytically processed to generate alpha and beta subunits that form the mature protein, which is then further processed to generate numerous peptide products.	Boire, et al. found that C3 adapted the cerebrospinal fluid for leptomeningeal metastasis[26].
TLR4	7099	The protein encoded by this gene is a member of the Toll-like receptor (TLR) family which plays a fundamental role in pathogen recognition and activation of innate immunity. TLRs are highly conserved from Drosophila to humans and share structural and functional similarities. They recognize pathogen-associated molecular patterns that are expressed on infectious agents, and mediate the production of cytokines necessary for the development of effective immunity.	Zandi, et al. found that TLR4 blockade suppressed ovarian and breast cancer cells invasion through inhibition of extracellular matrix degradation and EMT[27].
LILRB2	10288	This gene is a member of the leukocyte immunoglobulin-like receptor (LIR) family, which is found in a gene cluster at chromosomal region 19q13.4. The encoded protein belongs to the subfamily B class of LIR receptors which contain two or four extracellular immunoglobulin domains, a transmembrane domain, and two to four cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs)	Shao, et al. found that LILRB2 was critical for endometrial cancer progression[28]. Liu, et al. found that LILRB2 promoted the propagation of lung cancer cells[29].
ICAM1	3383	This gene encodes a cell surface glycoprotein which is typically expressed on endothelial cells and cells of the immune system. It binds to integrins of type CD11a / CD18, or CD11b / CD18 and is also exploited by Rhinovirus as a receptor.	Li, et al identified LILRB2 as one of the genes in metastasis model of human gastric cancer in nude mice [30].
TIMP1	7076	This gene belongs to the TIMP gene family. The proteins encoded by this gene family are natural inhibitors of the matrix metalloproteinases (MMPs), a group of peptidases involved in degradation of the extracellular matrix.	Liu, et al. identified TIMP1 as one of the key genes associated with the pathogenesis and prognosis of gastric cancer by bioinformatic analysis [31].
SPP1	6696	The protein encoded by this gene is involved in the attachment of osteoclasts to the mineralized bone matrix. The encoded protein is secreted and binds hydroxyapatite with high affinity.	Choe, et al. found that upregulation of SPP1 was related to poor survival outcomes in colorectal cancer[32].
CD163	9332	The protein encoded by this gene is a member of the scavenger receptor cysteine-rich (SRCR) superfamily, and is exclusively expressed in monocytes and macrophages. It functions as an acute phase-regulated receptor involved in the clearance and endocytosis of hemoglobin/haptoglobin complexes by macrophages, and may thereby protect tissues from free hemoglobin-mediated oxidative damage.	Ding, et al. identified CD163 as a novel biomarker for colorectal cancer[33]. Shiraishi, et al. found that CD163 was required for protumoral activation of macrophages in human and murine sarcoma[34].
MMP9	4318	Proteins of the matrix metalloproteinase (MMP) family are involved in the breakdown of extracellular matrix in normal physiological processes, such as embryonic development, reproduction, and tissue remodeling, as well as in disease processes, such as arthritis and metastasis.	Ren, et al. found that coronin3 promoted gastric cancer metastasis via the up-regulation of MMP9 and cathepsin K [35].
CXCL10	3627	This antimicrobial gene encodes a chemokine of the CXC subfamily and ligand for the	Zhou, et al reported that CXCL10/CXCR3 axis

		receptor CXCR3. Binding of this protein to CXCR3 results in pleiotropic effects, including stimulation of monocytes, natural killer and T-cell migration, and modulation of	promoted the invasion of gastric cancer [36].		
		adhesion molecule expression.			
PLEK	5341	PLEK (Pleckstrin) is a Protein Coding gene. Diseases associated with PLEK include Aarskog-Scott Syndrome and Agammaglobulinemia, X-Linked. Among its related pathways are Response to elevated platelet cytosolic Ca ²⁺ .	Few studies were reported		
CXCL1	2919	This antimicrobial gene encodes a member of the CXC subfamily of chemokines. The encoded protein is a secreted growth factor that signals through the G-protein coupled receptor, CXC receptor 2. This protein plays a role in inflammation and as a chemoattractant for neutrophils.	Cheng, et al. found that overexpression of CXCL1 and its receptor CXCR2 promoted tumor invasion in gastric cancer [37].		
Other hub g	enes in WG	CNA network			
RGS1	5996	This gene encodes a member of the regulator of G-protein signalling family. This protein is located on the cytosolic side of the plasma membrane and contains a conserved, 120 amino acid motif called the RGS domain. The protein attenuates the signalling activity of G-proteins by binding to activated, GTP-bound G alpha subunits and acting as a GTPase activating protein (GAP), increasing the rate of conversion of the GTP to GDP.	Tanabe, et al. found that RGS1 was up-regulated in diffuse-type GC cells[38].		
CLEC7A	64581	This gene encodes a member of the C-type lectin/C-type lectin-like domain (CTL/CTLD) superfamily. The encoded glycoprotein is a small type II membrane receptor with an extracellular C-type lectin-like domain fold and a cytoplasmic domain with an immunoreceptor tyrosine-based activation motif. It functions as a pattern-recognition receptor that recognizes a variety of beta-1,3-linked and beta-1,6-linked glucans from fungi and plants, and in this way plays a role in innate immune response.	Few studies were reported		
LILRB4	11006	This gene is a member of the leukocyte immunoglobulin-like receptor (LIR) family, which is found in a gene cluster at chromosomal region 19q13.4. The encoded protein belongs to the subfamily B class of LIR receptors which contain two or four extracellular immunoglobulin domains, a transmembrane domain, and two to four cytoplasmic immunoreceptor tyrosine-based inhibitory motifs (ITIMs).	Zhang, et al. reported that LILRB4 played a key role in gastric cancer immune escape [39].		
НСК	3055	The protein encoded by this gene is a member of the Src family of tyrosine kinases. This protein is primarily hemopoietic, particularly in cells of the myeloid and B-lymphoid lineages. It may help couple the Fc receptor to the activation of the respiratory burst. In addition, it may play a role in neutrophil migration and in the degranulation of neutrophils.	Poh, et al. found that HCK inhibition impaired STAT3-dependent gastric tumor growth in mice[40].		
SLCO2B1	11309	This locus encodes a member of the organic anion-transporting polypeptide family of membrane proteins. The protein encoded by this locus may function in regulation of placental uptake of sulfated steroids.	Hahn, et al. found that SLCO2B1 might contribute to castration resistance of prostate cancer[41].		
CIQC	714	This gene encodes the C-chain polypeptide of serum complement subcomponent C1q, which associates with C1r and C1s to yield the first component of the serum complement system.	Few studies were reported		
GBP1	2633	Guanylate binding protein expression is induced by interferon. Guanylate binding proteins are characterized by their ability to specifically bind guanine nucleotides (GMP, GDP, and GTP) and are distinguished from the GTP-binding proteins by the presence of 2 binding motifs rather than 3.	Ji, et al. reported that overexpression of GBP1 predicted poor prognosis and promotes tumor growth in human glioblastoma multiforme[42].		
LAIR1	3903	The protein encoded by this gene is an inhibitory receptor found on peripheral	Jingushi, et al. found that LAIR1 promoted		

			mononuclear cells, including natural killer cells, T cells, and B cells. Inhibitory receptors regulate the immune response to prevent lysis of cells recognized as self. The gene is a member of both the immunoglobulin superfamily and the leukocyte-associated inhibitory receptor family.	tumorigenesis in renal cell carcinoma [43].
HAVCR2		84868	The protein encoded by this gene belongs to the immunoglobulin superfamily, and TIM family of proteins. CD4-positive T helper lymphocytes can be divided into types 1 (Th1) and 2 (Th2) on the basis of their cytokine secretion patterns.	Wang, et al found that HAVCR2 expression were independent prognostic factor for patients with gastric cancer [44].
	FPR3	2359	FPR3 (Formyl Peptide Receptor 3) is a Protein Coding gene. Diseases associated with FPR3 include Rubeosis Iridis. Among its related pathways are Signaling by GPCR and Peptide ligand-binding receptors.	Cheng, et al reported that FPR3 were associated with invasiveness of gastric cancer [45].
TNFSF13H		10673	The protein encoded by this gene is a cytokine that belongs to the tumor necrosis factor (TNF) ligand family. This cytokine is a ligand for receptors TNFRSF13B/TACI, TNFRSF17/BCMA, and TNFRSF13C/BAFFR.	Li, et al identified TNFSF13B as one of the hub genes in kidney renal clear cell carcinoma microenvironment [46].
TRE	TREM2	54209	This gene encodes a membrane protein that forms a receptor signaling complex with the TYRO protein tyrosine kinase binding protein. The encoded protein functions in immune response and may be involved in chronic inflammation by triggering the production of constitutive inflammatory cytokines.	Zhang, et al found that high TREM2 expression correlates with poor prognosis in gastric cancer [47]. Tang, et al reported that TREM2 acts as a tumor suppressor in hepatocellular carcinoma [48].
	PLA2G7	7941	The protein encoded by this gene is a secreted enzyme that catalyzes the degradation of platelet-activating factor to biologically inactive products. Defects in this gene are a cause of platelet-activating factor acetylhydrolase deficiency.	Lehtinen, et al found that PLA2G7 regulated EMT in cultured breast cancer cells [49].
SIGLEC7 2		27036	SIGLEC7 (Sialic Acid Binding Ig Like Lectin 7) is a Protein Coding gene. Diseases associated with SIGLEC7 include Congenital Disorder Of Glycosylation, Type Iic and Autoimmune Disease Of Peripheral Nervous System.	Few studies were reported
TM6SF1		53346	TM6SF1 (Transmembrane 6 Superfamily Member 1) is a Protein Coding gene.	Few studies were reported
	IF116	3428	This gene encodes a member of the HIN-200 (hematopoietic interferon-inducible nuclear antigens with 200 amino acid repeats) family of cytokines. The encoded protein contains domains involved in DNA binding, transcriptional regulation, and protein-protein interactions.	Yang, et al found that IFI16 showed lower mRNA expression in the colorectal tumor tissues [50].
MS4A6A		64231	This gene encodes a member of the membrane-spanning 4A gene family. Members of this nascent protein family are characterized by common structural features and similar intron/exon splice boundaries and display unique expression patterns among hematopoietic cells and nonlymphoid tissues.	Pan, et al reported that MS4A6A was relevant to pathological grade and prognosis in ovarian cancer [51].
	CD53	963	The protein encoded by this gene is a member of the transmembrane 4 superfamily, also known as the tetraspanin family. Most of these members are cell-surface proteins that are characterized by the presence of four hydrophobic domains.	Few studies were reported
MSR1		4481	This gene encodes the class A macrophage scavenger receptors, which include three different types (1, 2, 3) generated by alternative splicing of this gene. These receptors or isoforms are macrophage-specific trimeric integral membrane glycoproteins and have been implicated in many macrophage-associated physiological and pathological processes including atherosclerosis, Alzheimer's disease, and host defense.	Rose, et al found that MSR1 repeats modulated gene expression and affected risk of breast and prostate cancer [52].
	SAMSN1	64092	SAMSN1 is a member of a novel gene family of putative adaptors and scaffold proteins containing SH3 and SAM (sterile alpha motif) domains	Kanda, et al reported that downregulation of SAMSN1 transcription affected the progression and recurrence of gastric cancer [53].

				Sueoka, et al found that suppression of SAMSN1 expression is associated with the malignant phenotype of hepatocellular carcinoma [54].
	LCP1	3936	Plastins are a family of actin-binding proteins that are conserved throughout eukaryote evolution and expressed in most tissues of higher eukaryotes. In humans, two ubiquitous plastin isoforms (L and T) have been identified.	Koide, et al reported that LCP1 is a useful biomarker for determining progression of oral squamous cell carcinomas [55].
	GPR65	8477	GPR65 (G Protein-Coupled Receptor 65) is a Protein Coding gene. Diseases associated with GPR65 include Gastric Cancer and B-Cell Childhood Acute Lymphoblastic Leukemia. Among its related pathways are Signaling by GPCR and RET signaling.	Li, et al reported that Long non-coding RNA GPR65-1 was up-regulated in gastric cancer and promoted tumor growth [56].
SLA		6503	SLA (Src Like Adaptor) is a Protein Coding gene. Diseases associated with SLA include Inflammatory Bowel Disease 25.	Few studies were reported
	IL2RA	3559	The interleukin 2 (IL2) receptor alpha (IL2RA) and beta (IL2RB) chains, together with the common gamma chain (IL2RG), constitute the high-affinity IL2 receptor.	Jia, et al found that IL2RA polymorphisms were associated with lung cancer risk in the Chinese Han population [57].

*derived from: https://www.ncbi.nlm.nih.gov/gene;

Note: all information was achieved from GENE (https://www.ncbi.nlm.nih.gov/gene) and GeneCards (http://www.genecards.org)

References

1. Shabo I, Olsson H, Stål O, Svanvik J. Breast cancer expression of DAP12 is associated with skeletal and liver metastases and poor survival. Clin Breast Cancer. 2013;13(5):371-377.

2. Takamiya R, Ohtsubo K, Takamatsu S, Taniguchi N, Angata T. The interaction between Siglec-15 and tumor-associated sialyl-Tn antigen enhances TGF-β secretion from monocytes/macrophages through the DAP12-Syk pathway. Glycobiology. 2013;23(2):178-187.

3. Luo Y, Robinson S, Fujita J, et al. Transcriptome profiling of whole blood cells identifies PLEK2 and C1QB in human melanoma. PLoS One. 2011;6(6):e20971.

4. Camacho M, Agüero A, Sumarroca A, et al. Prognostic value of CD45 transcriptional expression in head and neck cancer. Eur Arch Otorhinolaryngol. 2018;275(1):225-232.

5. Ahmadvand S, Faghih Z, Montazer M, et al. Importance of CD45RO+ tumor-infiltrating lymphocytes in post-operative survival of breast cancer patients. Cell Oncol (Dordr). 2019;42(3):343-356.

6. Chu S, Wang H, Yu M. A putative molecular network associated with colon cancer metastasis constructed from microarray data. World J Surg Oncol. 2017;15(1):115.

7. Wang P, Shi Q, Deng WH, et al. Relationship between expression of NADPH oxidase 2 and invasion and prognosis of human gastric cancer. World J Gastroenterol. 2015;21(20):6271-6279. doi:10.3748/wjg.v21.i20.6271

8. Zhang K, Kong X, Feng G, et al. Investigation of hypoxia networks in ovarian cancer via bioinformatics analysis. J Ovarian Res. 2018;11(1):16. Published 2018 Feb 26.

9. Itatani Y, Kawada K, Fujishita T, et al. Loss of SMAD4 from colorectal cancer cells promotes CCL15 expression to recruit CCR1+ myeloid cells and facilitate liver metastasis. Gastroenterology. 2013;145(5):1064-1075.e11.

10. Sugasawa H, Ichikura T, Tsujimoto H, et al. Prognostic significance of expression of CCL5/RANTES receptors in patients with gastric cancer. J Surg Oncol. 2008;97(5):445-450. doi:10.1002/jso.20984

11. Zhao L, Niu H, Liu Y, et al. LOX inhibition downregulates MMP-2 and MMP-9 in gastric cancer tissues and cells. J Cancer. 2019;10(26):6481-6490. Published 2019 Oct 20. doi:10.7150/jca.33223

12. Liu X, Wu J, Zhang D, et al. Identification of Potential Key Genes Associated With the Pathogenesis and Prognosis of Gastric Cancer Based on Integrated Bioinformatics Analysis. Front Genet. 2018;9:265.

13. Wang S, Gao B, Yang H, Liu X, Wu X, Wang W. MicroRNA-432 is downregulated in cervical cancer and directly targets FN1 to inhibit cell proliferation and invasion. Oncol Lett. 2019;18(2):1475-1482.

14. Shi S, Tian B. Identification of biomarkers associated with progression and prognosis in bladder cancer via co-expression analysis. Cancer Biomark. 2019;24(2):183-193.

15. Yang D, Zhao D, Chen X. MiR-133b inhibits proliferation and invasion of gastric cancer cells by up-regulating FBN1 expression. Cancer Biomark. 2017;19(4):425-436. doi:10.3233/CBM-160421

16. Martinez-Ordoñez A, Seoane S, Cabezas P, et al. Breast cancer metastasis to liver and lung is facilitated by Pit-1-CXCL12-CXCR4 axis. Oncogene. 2018;37(11):1430-1444.

17. Terashima M, Ichikawa W, Ochiai A, et al. TOP2A, GGH, and PECAM1 are associated with hematogenous, lymph node, and peritoneal recurrence in stage II/III gastric cancer patients enrolled in the ACTS-GC study. Oncotarget. 2017;8(34):57574-57582.

18. Sun C, Yuan Q, Wu D, Meng X, Wang B. Identification of core genes and outcome in gastric cancer using bioinformatics analysis. Oncotarget. 2017;8(41):70271-70280.

19. Du F, Feng W, Chen S, et al. Sex determining region Y-box 12 (SOX12) promotes gastric cancer metastasis by upregulating MMP7 and IGF1. Cancer Lett. 2019;452:103-118. doi:10.1016/j.canlet.2019.03.035

20. West AC, Tang K, Tye H, et al. Identification of a TLR2-regulated gene signature associated with tumor cell growth in gastric cancer. Oncogene. 2017;36(36):5134-5144. doi:10.1038/onc.2017.121

21. Li J, Ding Y, Li A. Identification of COL1A1 and COL1A2 as candidate prognostic factors in gastric cancer. World J Surg Oncol. 2016;14(1):297.

22. Ao R, Guan L, Wang Y, Wang JN. Silencing of COL1A2, COL6A3, and THBS2 inhibits gastric cancer cell proliferation, migration, and invasion while promoting apoptosis through the PI3k-Akt signaling pathway. J Cell Biochem. 2018;119(6):4420-4434.

23. Shen J, Zhai J, You Q, et al. Cancer-associated fibroblasts-derived VCAM1 induced by H. pylori infection facilitates tumor invasion in gastric cancer. Oncogene. 2020;39(14):2961-2974. doi:10.1038/s41388-020-1197-4

24. Liu X, Wu J, Zhang D, et al. Identification of Potential Key Genes Associated With the Pathogenesis and Prognosis of Gastric Cancer Based on Integrated Bioinformatics Analysis. Front Genet. 2018;9:265. Published 2018 Jul 17. doi:10.3389/fgene.2018.00265

25. Wang Q, Yu J. MiR-129-5p suppresses gastric cancer cell invasion and proliferation by inhibiting COL1A1. Biochem Cell Biol. 2018;96(1):19-25.

26. Boire A, Zou Y, Shieh J, Macalinao DG, Pentsova E, Massagué J. Complement Component 3 Adapts the Cerebrospinal Fluid for Leptomeningeal Metastasis. Cell. 2017;168(6):1101-1113.e13.

27. Zandi Z, Kashani B, Poursani EM, et al. TLR4 blockade using TAK-242 suppresses ovarian and breast cancer cells invasion through the inhibition of extracellular matrix degradation and epithelial-mesenchymal transition. Eur J Pharmacol. 2019;853:256-263.

28. Shao H, Ma L, Jin F, Zhou Y, Tao M, Teng Y. Immune inhibitory receptor LILRB2 is critical for the endometrial cancer progression. Biochem Biophys Res Commun. 2018;506(1):243-250.

29. Liu X, Yu X, Xie J, et al. ANGPTL2/LILRB2 signaling promotes the propagation of lung cancer cells. Oncotarget. 2015;6(25):21004-21015.

30. Li K, Du H, Lian X, et al. Establishment and characterization of a metastasis model of human gastric cancer in nude mice. BMC Cancer. 2016;16:54. Published 2016 Feb 3. doi:10.1186/s12885-016-2101-z

31. Liu X, Wu J, Zhang D, et al. Identification of Potential Key Genes Associated With the Pathogenesis and Prognosis of Gastric Cancer Based on Integrated Bioinformatics

Analysis. Front Genet. 2018;9:265. Published 2018 Jul 17. doi:10.3389/fgene.2018.00265

32. Choe EK, Yi JW, Chai YJ, Park KJ. Upregulation of the adipokine genes ADIPOR1 and SPP1 is related to poor survival outcomes in colorectal cancer. J Surg Oncol. 2018;117(8):1833-1840.

33. Ding D, Yao Y, Yang C, Zhang S. Identification of mannose receptor and CD163 as novel biomarkers for colorectal cancer. Cancer Biomark. 2018;21(3):689-700.

34. Shiraishi D, Fujiwara Y, Horlad H, et al. CD163 Is Required for Protumoral Activation of Macrophages in Human and Murine Sarcoma. Cancer Res. 2018;78(12):3255-3266.

35. Ren G, Tian Q, An Y, et al. Coronin 3 promotes gastric cancer metastasis via the up-regulation of MMP-9 and cathepsin K. Mol Cancer. 2012;11:67. Published 2012 Sep 14. doi:10.1186/1476-4598-11-67

36. Zhou H, Wu J, Wang T, Zhang X, Liu D. CXCL10/CXCR3 axis promotes the invasion of gastric cancer via PI3K/AKT pathway-dependent MMPs production. Biomed Pharmacother. 2016;82:479-488. doi:10.1016/j.biopha.2016.04.069

37. Cheng WL, Wang CS, Huang YH, Tsai MM, Liang Y, Lin KH. Overexpression of CXCL1 and its receptor CXCR2 promote tumor invasion in gastric cancer [published correction appears in Ann Oncol. 2011 Nov;22(11):2537]. Ann Oncol. 2011;22(10):2267-2276. doi:10.1093/annonc/mdq739

38. Tanabe S, Aoyagi K, Yokozaki H, Sasaki H. Regulated genes in mesenchymal stem cells and gastric cancer. World J Stem Cells. 2015;7(1):208-222.

39. Zhang Y, Lu N, Xue Y, et al. Expression of immunoglobulin-like transcript (ILT)2 and ILT3 in human gastric cancer and its clinical significance. Mol Med Rep. 2012;5(4):910-916. doi:10.3892/mmr.2012.744

40. Poh AR, Dwyer AR, Eissmann MF, et al. Inhibition of the SRC Kinase HCK Impairs STAT3-Dependent Gastric Tumor Growth in Mice. Cancer Immunol Res. 2020;8(4):428-435. doi:10.1158/2326-60666.CIR-19-0623

41. Fujimoto N, Kubo T, Inatomi H, et al. Polymorphisms of the androgen transporting gene SLCO2B1 may influence the castration resistance of prostate cancer and the racial differences in response to androgen deprivation. Prostate Cancer Prostatic Dis. 2013;16(4):336-340.

42. Ji X, Zhu H, Dai X, et al. Overexpression of GBP1 predicts poor prognosis and promotes tumor growth in human glioblastoma multiforme. Cancer Biomark. 2019;25(3):275-290.

43. Jingushi K, Uemura M, Nakano K, et al. Leukocyte-associated immunoglobulin-like receptor 1 promotes tumorigenesis in RCC. Oncol Rep. 2019;41(2):1293-1303. doi:10.3892/or.2018.6875.

44. Wang Y, Zhao E, Zhang Z, Zhao G, Cao H. Association between Tim-3 and Gal-9 expression and gastric cancer prognosis. Oncol Rep. 2018;40(4):2115-2126. doi:10.3892/or.2018.6627.

45. Cheng TY, Wu MS, Lin JT, et al. Annexin A1 is associated with gastric cancer survival and promotes gastric cancer cell invasiveness through the formyl peptide receptor/extracellular signal-regulated kinase/integrin beta-1-binding protein 1 pathway. Cancer. 2012;118(23):5757-5767. doi:10.1002/cncr.27565.

46. Li S, Xu W. Mining TCGA database for screening and identification of hub genes in kidney renal clear cell carcinoma microenvironment [published online ahead of print, 2019 Nov 7]. J Cell Biochem. 2019;10.1002/jcb.29511. doi:10.1002/jcb.29511

47. Zhang X, Wang W, Li P, Wang X, Ni K. High TREM2 expression correlates with poor prognosis in gastric cancer. Hum Pathol. 2018;72:91-99. doi:10.1016/j.humpath.2017.10.026

48. Tang W, Lv B, Yang B, et al. TREM2 acts as a tumor suppressor in hepatocellular carcinoma by targeting the PI3K/Akt/β-catenin pathway. Oncogenesis. 2019;8(2):9. Published 2019 Jan 25. doi:10.1038/s41389-018-0115-x.

49. Lehtinen L, Vainio P, Wikman H, et al. PLA2G7 associates with hormone receptor negativity in clinical breast cancer samples and regulates epithelial-mesenchymal transition

in cultured breast cancer cells. J Pathol Clin Res. 2017;3(2):123-138. Published 2017 Apr 4. doi:10.1002/cjp2.69

50. Yang CA, Huang HY, Chang YS, Lin CL, Lai IL, Chang JG. DNA-Sensing and Nuclease Gene Expressions as Markers for Colorectal Cancer Progression. Oncology. 2017;92(2):115-124. doi:10.1159/000452281

51. Pan X, Chen Y, Gao S. Four genes relevant to pathological grade and prognosis in ovarian cancer [published online ahead of print, 2020 May 13]. Cancer Biomark. 2020;10.3233/CBM-191162. doi:10.3233/CBM-191162

52. Rose AM, Krishan A, Chakarova CF, et al. MSR1 repeats modulate gene expression and affect risk of breast and prostate cancer. Ann Oncol. 2018;29(5):1292-1303. doi:10.1093/annonc/mdy082

53. Kanda M, Shimizu D, Sueoka S, et al. Prognostic relevance of SAMSN1 expression in gastric cancer. Oncol Lett. 2016;12(6):4708-4716. doi:10.3892/ol.2016.5233

54. Sueoka S, Kanda M, Sugimoto H, et al. Suppression of SAMSN1 Expression is Associated with the Malignant Phenotype of Hepatocellular Carcinoma. Ann Surg Oncol. 2015;22 Suppl 3:S1453-S1460. doi:10.1245/s10434-015-4524-1

55. Koide N, Kasamatsu A, Endo-Sakamoto Y, et al. Evidence for Critical Role of Lymphocyte Cytosolic Protein 1 in Oral Cancer. Sci Rep. 2017;7:43379. Published 2017 Feb 23. doi:10.1038/srep43379

56. Li Y, Shen Z, Wang B, et al. Long non-coding RNA GPR65-1 is up-regulated in gastric cancer and promotes tumor growth through the PTEN-AKT-slug signaling pathway. Cell Cycle. 2018;17(6):759-765. doi:10.1080/15384101.2018.1426414

57. Jia Z, Zhang Z, Yang Q, Deng C, Li D, Ren L. Effect of IL2RA and IL2RB gene polymorphisms on lung cancer risk. Int Immunopharmacol. 2019;74:105716. doi:10.1016/j.intimp.2019.105716

			TCGA-ST	AD		
	mRNA e	expression	UD	95% CI		D
	Low	High	HK	Bottom	Тор	P
Common hub genes in PPI and WGCNA network						
TYROBP	160	207	1.456	1.038	2.042	0.029
CIQB	146	221	1.475	1.037	2.098	0.030
PTPRC	256	111	1.301	0.923	1.832	0.132
LCP2	217	150	1.272	0.917	1.764	0.148
CYBB	113	254	1.287	0.882	1.877	0.189
CCR1	226	141	1.148	0.825	1.598	0.412
Other hub gen	es in PPI net	twork				
LOX	221	146	1.716	1.234	2.385	0.001
COL3A1	270	97	1.739	1.233	2.454	0.001
FN1	249	118	1.706	1.224	2.377	0.001
FBN1	262	105	1.687	1.204	2.365	0.002
CXCR4	207	160	1.649	1.190	2.287	0.002
PECAM1	275	92	1.613	1.136	2.289	0.007
BGN	103	264	1.716	1.141	2.580	0.009
IGF1	246	121	1.486	1.066	2.072	0.019
TLR2	97	270	1.645	1.060	2.553	0.025
COL1A2	268	99	1.483	1.043	2.109	0.027
VCAM1	117	250	1.527	1.031	2.263	0.033
COL1A1	93	274	1.531	1.006	2.328	0.045
SELL	100	267	1.499	0.997	2.253	0.050
С3	256	111	1.397	0.997	1.957	0.051
TLR4	242	125	1.372	0.985	1.912	0.060
LILRB2	135	232	1.394	0.975	1.993	0.067
ICAM1	152	215	1.365	0.968	1.927	0.075
TIMP1	275	92	1.361	0.954	1.942	0.087
SPP1	201	166	1.279	0.922	1.774	0.140
CD163	263	104	1.235	0.874	1.745	0.230

Table S8 Association of hub genes in PPI and WGCNA networks with overall survival in

TCGA-STAD

MMP9	185	182	1.200	0.863	1.668	0.278		
CXCL10	118	249	1.208	0.839	1.739	0.309		
PLEK	170	197	1.105	0.794	1.539	0.553		
CXCL1	264	103	1.073	0.756	1.523	0.693		
Other hub genes in WGCNA network								
RGS1	249	118	1.806	1.297	2.514	< 0.001		
CLEC7A	92	275	1.599	1.052	2.429	0.027		
LILRB4	118	249	1.522	1.044	2.218	0.028		
НСК	99	268	1.491	0.997	2.228	0.049		
SLCO2B1	209	158	1.353	0.977	1.875	0.068		
CIQC	128	239	1.364	0.950	1.958	0.091		
GBP1	113	254	1.378	0.938	2.026	0.101		
LAIR1	98	269	1.385	0.931	2.061	0.106		
HAVCR2	102	265	1.371	0.930	2.022	0.109		
FPR3	235	132	1.294	0.929	1.803	0.127		
TNFSF13B	104	263	1.333	0.911	1.950	0.138		
TREM2	156	211	1.279	0.912	1.793	0.153		
PLA2G7	114	253	1.303	0.903	1.881	0.156		
SIGLEC7	253	114	1.276	0.909	1.790	0.158		
TM6SF1	234	133	1.265	0.909	1.761	0.162		
IFI16	236	131	1.256	0.900	1.751	0.179		
MS4A6A	229	138	1.251	0.898	1.741	0.184		
CD53	264	103	1.264	0.892	1.790	0.187		
MSR1	124	243	1.259	0.879	1.803	0.208		
SAMSN1	133	234	1.235	0.864	1.766	0.245		
LCP1	191	176	1.192	0.860	1.652	0.290		
GPR65	260	107	1.205	0.850	1.706	0.294		
SLA	151	216	1.158	0.823	1.630	0.400		
IL2RA	130	237	1.158	0.813	1.651	0.415		

Internet of the second	TYK	ROBP	CIQB		
Immune factors	R	Р	R	Р	
B cells naive	-0.27	< 0.001	-0.24	< 0.001	
B cells memory	-0.18	0.005	-0.22	0.001	
Plasma cells	-0.19	0.004	-0.15	0.026	
T cells CD8	0.21	< 0.001	0.26	< 0.001	
T cells CD4 naive	-0.10	0.121	-0.10	0.114	
T cells CD4 memory resting	-0.27	< 0.001	-0.25	< 0.001	
T cells CD4 memory activated	0.26	< 0.001	0.37	< 0.001	
T cells follicular helper	0.01	0.887	0.11	0.057	
T cells regulatory	0.01	0.758	-0.09	0.146	
T cells gamma delta	0.15	< 0.001	0.22	< 0.001	
NK cells resting	0.01	0.044	0.01	0.054	
NK cells activated	-0.04	0.862	-0.05	0.690	
Monocyte	0.06	0.364	-0.02	0.770	
Macrophages M0	0.00	0.945	-0.05	0.421	
Macrophages M1	0.23	< 0.001	0.36	< 0.001	
Macrophages M2	0.46	< 0.001	0.47	< 0.001	
Dendritic cells resting	0.20	0.001	0.23	< 0.001	
Dendritic cells activated	-0.22	0.025	-0.29	0.001	
Mast cells resting	-0.01	0.843	-0.01	0.886	
Mast cells activated	-0.10	0.144	-0.16	0.014	
Eosinophils	0.15	< 0.001	0.11	< 0.001	
Neutrophils	0.14	0.004	0.03	0.175	
GZMA	-0.25	< 0.001	-0.24	< 0.001	
PRF1	-0.33	< 0.001	-0.32	< 0.001	
Cytolytic activity	-0.30	< 0.001	-0.28	< 0.001	
CD274	0.49	< 0.001	0.61	< 0.001	
PDCD1	0.55	< 0.001	0.65	< 0.001	
PDCD1LG2	0.72	< 0.001	0.80	< 0.001	
LAG3	0.59	< 0.001	0.70	< 0.001	

Table S9 Correlation between key genes and immune factors in TCGA-STAD

Model	Variables	UD	95%CI		D
Model	variables	пк	Bottom	top	Г
	TYROBP	1.455	1.038	2.041	0.029
Universityle Cov model	CIQB	1.474	1.037	2.097	0.030
Univariable Cox model	macrophages M1	1.182	0.817	1.712	0.374
	macrophages M2	1.494	1.055	2.116	0.024
Maltinggiable Corr and del 1	TYROBP	1.518	1.060	2.174	0.023
Multivariable Cox model 1	macrophages M1	1.054	0.719	1.545	0.786
Multivariable Cox model 2	C1QB	1.550	1.059	2.268	0.024
Multivariable Cox model 2	macrophages M1	1.033	0.702	1.520	0.869
Multivariable Con model 2	TYROBP	1.399	0.970	2.018	0.073
Multivariable Cox model 5	macrophages M2	1.340	0.929	1.933	0.118
Multivariable Cay model 4	C1QB	1.428	0.976	2.088	0.067
Wullivariable Cox model 4	macrophages M2	1.349	0.939	1.94	0.106

Table S10 Univariable and multivariable Cox regression for *TYROBP*, *C1QB* and macrophages