SUPPLEMENTARY MATERIAL: Burchardt et al. 2020. Holocentric karyotype evolution in *Rhynchospora* (Cyperaceae) is marked by intense numerical and structural changes, and in genome sizes.

Sections	Species/Samples	2 <i>n</i>	n	x	$2C \pm SD (pg)$	1C (Mbp)	Locality	References/new vouchers
Dichromena	R. wightiana (Nees) Steudel	_	10	5	_	_	_	Rath and Patnaik (1978)
	R. albescens (Miqu.) Kük.	_	<i>c</i> . 10	_	_	_	_	Thomas (1984)
	R. breviuscula H.Pfeiff.	10	5	5	_	_	_	Luceño et al. (1998)
		10	5	5	_	_	_	Arguelho et al. (2012)
		10	5	5	0.83 ± 0.02	405.87	Guapiara, SP	FUEL056045
		10	5	5	0.80 ± 0.02	391.20	Eldorado, SP	FUEL056044
		10	5	5	0.83 ± 0.03	405.87	Iporanga, SP	FUEL055362
	R. colorata (L.) Hitchc.	_	5	5	_	_	_	Thomas (1984)
	R. latifolia (Baldw.) Thomas	_	5	5	_	_	_	Thomas (1984)
	<i>R. nervosa</i> subsp. <i>nervosa</i>	10	5	5	_	_	_	Arguelho et al. (2012)
	(Vahl) Böckeler	10	5	5	_	_	Chapada dos Guimarães MT	FUEL056127
		10	5	5	0.78 ± 0.01	381.42	Florianópolis, SC	FUEL056046
		20	10	5	_	_	_	Luceño et al. (1998)
		20	10	5	_	_	_	Arguelho et al. (2012)

Supplemental data 1. Genome and karyotype information of Rhynchospora species organized in sections according Kukenthal's classification

	20	10	5	-	_	Carrancas, MG	FUEL059059
	30	15	5	-	_	_	Luceño et al. (1998)
	30	15	5	-	_	_	Arguelho et al. (2012)
	_	20	5	-	_	_	Shibata (1962)
<i>R. nervosa</i> subsp. <i>ciliata</i> T.Koyama	10	5	5	1.12	_	-	Ribeiro et al. (2017)
5	10	5	5	-	_	_	Luceño et al. (1998)
	10	5	5	-	_	_	Arguelho et al. (2012)
	10	5	5	1.11 ± 0.03	542.79	UFPB, Areia, PB	FUEL056048
	10	5	5	1.10 ± 0.02	537.90	Areia, PB	FUEL056047
	10	5	5	1.07 ± 0.03	523.23	Recife. PE	FUEL055372
R. pubera (Vahl) Boeckeler	10	5	5	3.3	1,613.70	_	Marques et al. (2015)
	10	5	5	-	-	Recife, PE	FUEL055374
	10	5	5	-	-	_	Luceño et al. (1998)
	10	5	5	-	-	_	Arguelho et al. (2012)
	12	dysploid	6	_	_	-	Arguelho et al. (2012)
R. reptans (Rich.) Böckeler	_	<i>c</i> . 20	5	_	_	-	Thomas (1984)
R. setigera (Kunth.) Boeck.	10	5	5	_	_	_	Luceño et al. (1998)

		10	5	5	0.92 ± 0.01	449.88	Jaguariaíva, PR	FUEL056065
		20	10	5	_	_	_	Luceño et al. (1998)
	R. steyermarkii Koyama	_	<i>c</i> . 10	5	-	-	-	Thomas (1984)
Pseudocapitatae	R. ciliolata Boeck.	10	5	5	_	-	_	Vanzela et al. (2000)
	R. lapensis C.B. Clarke	20	10	5	-	-	_	Vanzela et al. (2000)
	R. pilosa Boeckeler	<i>c</i> . 50	25	5	-	-	_	Vanzela et al. (2000)
		_	-	_	0.57 ± 0.03	278.73	Carrancas, MG	FUEL055368
	<i>R. radicans</i> (Schltdl. and Cham.) H. Pfeiff	10	5	5	0.87 ± 0.01	425.43	_	Ribeiro et al. (2018)
	<i>R. recurvata</i> (Nees) Steudel	10	5	5	-	-	—	Vanzela et al. (2000)
	R. ridleyi C.B. Clarke	12	6	6	_	_	_	Vanzela et al. (2000)
		12	6	6	1.02 ± 0.01	498.78	-	Ribeiro et al. (2018)
Psilocarya	R. eximia (Nees) Boeck.	10	5	5	-	-	_	Vanzela et al. (2000)
	R. robusta (Kunth.) Boeck	10	5	5	_	-	_	Vanzela et al. (2000)
	R. velutina (Kunth.) Boeck.	10	5	5	-	-	_	Vanzela et al. (2000)
		10	5	5	-	-	-	Arguelho et al. (2012)
Tenues	R. contracta (Nees) Raynal	18	9	9	_	_	-	Vanzela et al. (2000)
	R. emaciata (Nees) Boeck.	10	9	5	_	_	_	Vanzela et al. (2000)

R. junciformis	18	9	9	-	-	-	Arguelho et al. (2012)
R. nanuzae Luceño and Rocha	10	5	5	_	_	_	Vanzela et al. (2000)
R. riparia (Nees) Boeckeler	10	5	5	_	_	_	Vanzela et al. (2000)
	10	5	5	0.64 ± 0.01	312.96	Parque Guariba, PB	FUEL056070
<i>R. spruceana</i> C.B.Clarke	13	dysploid	5	_	-	-	Gadela and Kliphuis (1963)
<i>R. tenuis</i> Link	4	dysploid	5	0,78	381.42	_	Feitoza <i>et al.</i> (unpublished data)
	4	dysploid	5	_	_	-	Vanzela <i>et al.</i> (2000)
	4	dysploid	5	_	_	_	Arguelho et al. (2012)
	4	dysploid	5	0.80 ± 0.02	391.20	Itapoá, PR	FUEL056042
	5	dysploid	5	-	_	_	Arguelho et al. (2012)
	6	dysploid	5	0.83 ± 0.04	405.87	Carrancas, MG	FUEL056043
	8	dysploid	5	-	_	_	Vanzela et al. (1996)
	10	5	5	_	-	-	Gadela and Kliphuis (1964)
<i>R. tenuis</i> subsp.	18	dysploid	5	-	_	_	Vanzela et al. (2000)
uusiroorusiitensis 1.Koyama	18	dysploid	5	_	_	_	Arguelho et al. (2012)
 	18	dysploid	5	2.32 ± 0.03	1134.48	Antonina, PR	FUEL056071

Table continuat	tion							
Spermodontes	R. brevirostres Griseb.	10	5	5	-	_	_	Vanzela et al. (2000)
		10	5	5	_	_	_	Vanzela et al. (2000)
	R. confinis (Nees) C.B. Clarke	20	10	5	_	_	_	Vanzela et al. (2000)
	R. filiformis Vahl	10	5	5	_	_	_	Vanzela et al. (2000)
	<i>R. graminea</i> Uitt.	13	dysploid	5	_	_	_	Gadela and Kliphuis (1964)
	R. tenerrima Nees ex Spreng.	20	10	5	_	_	_	Vanzela et al. (2000)
		20	10	5	-	_	_	Arguelho et al. (2012)
		20	10	5	1.14 ± 0.05	557.46	Antonina, PR	FUEL056041
		_	_	5	1.14 ± 0.03	557.46	Areia, PB	FUEL056069
		20	10	5	1.13 ± 0.03	552.57	Tupã, SP	FUEL056040
		20	10	5	1.25 ± 0.01	611.25	_	Ribeiro et al. (2018)
Valderugosae	<i>R. microcarpa</i> Baldw. ex A. Gray	36	18	6	_	_	_	Vanzela et al. (2000)
Fuscae	<i>R. fusca</i> (L.) Aiton f.	26	13	6	_	_	_	Löve and Löve (1982)
Albae	<i>R. alba</i> (L.) Vahl	26	13	6	_	_	-	Gadela and Kliphuis (1963)
		26	13	6	-	-	_	Dietrich (1972)
		26	13	6	-	_	_	Vachova (1976)
		26	13	6	_	_	_	Pogan et al. (1980)

		26	13	6	_	_	_	Löve and Löve (1981)
		26	13	6	_	_	_	Löve and Löve (1982)
		26	13	6	_	_	_	Hoshino (1987b)
		-	13	6	_	_	_	Taylor and Mulligan (1968)
		_	13	6	_	_	_	Pojar (1973)
	R. capillacea Torrey	26	13	6	_	_	_	Löve and Löve (1981)
	<i>R. faberi</i> C.B. Clarke	24	12	6	_	_	_	Hoshino (1987b)
	R. faurieri Franch.	62	31	_	_	_	_	Hoshino (1987b)
Glaucae	R. barrosiana Guagl.	36	18	6	_	_	_	Vanzela et al. (2000)
		36	18	6	0.54 ± 0.02	264.06	Tibagi, PR	FUEL056061
	R. brasiliensis Boeck.	<i>c</i> . 36	_	6	_	_	_	Vanzela et al. (2000)
	R. brownii Roem. and Sch.	34	17	6	_	_	_	Hoshino (1987 <i>b</i>)
	<i>R. brownii</i> subsp. <i>americana</i> Guaglianone	36	18	6	_	_	_	Vanzela et al. (2000)
	R. chinensis Böckeler	62	31	6	-	_	_	Hoshino (1987b)
	R. dissitispicula T.Koyama	36	18	6	0.56 ± 0.02	273.84	Carrancas, MG	FUEL056050
	R. flexuosa C.B. Clarke	36	18	6	_	_	_	Vanzela et al. (2000)
	R. fujiiana Mak.	26	13	6	_	_	_	Hoshino (1987b)

	R. marisculus Lindl. and Nees	30	15	6	-	-	-	Dopchiz et al. (2000)
		36	18	6	_	_	_	Vanzela et al. (2000)
		36	18	6	_	_	_	Arguelho et al. (2012)
		36	18	6	0.53 ± 0.01	259.17	Parque Guariba, PB	FUEL056051
	R. rugosa (Vahl) Gale	36	18	6	-	_	_	Vanzela et al. (2000)
		36	18	6	0.51 ± 0.03	249.39	Carrancas, MG	FUEL056067
	R. spiciformis Hillebr.	48	24	6	_	_	_	Skottsberg (1955)
Cephalotae	R. cephalotes (L.) Vahl	17	dysploid	9	_	_	_	Luceño et al. (1998b)
		18	9	9	_	_	-	Luceño et al. (1998b)
		18	9	9	-	-	_	Vanzela et al. (2000)
		18	9	9	0.68 ± 0.02	332.52	Areia, PB	FUEL056039
		19	dysploid	9	_	_	_	Luceño et al. (1998b)
		18	9	9	0.76 ± 0.01	371.64	_	Ribeiro et al. (2018)
	<i>R. comata</i> (L.) Roemer and Schultes	18	9	9	_	-	-	Vanzela et al. (2000)
Polycephalae	R. exaltata Kunth	20	10	5	_	_	_	Luceño et al. (1998)
		20	10	5	-	_	_	Luceño et al. (1998)
	R. glaziovii Boeckeler	10	5	5	_	_	_	Luceño et al. (1998)

		-	-	-	0.91 ± 0.01	444.99	Campina Grande do Sul, PR	FUEL056036
	<i>R. holoschoenoides</i> (Rich.) Herter	10	5	5	_	_	_	Luceño et al. (1998)
		20	10	5	-	-	_	Luceño et al. (1998)
		20	10	5	1.04 ± 0.02	508.56	Antonina, PR	FUEL056037
		20	10	5	0.98 ± 0.05	479.22	Campo Largo, PR	FUEL055371
		20	10	5	1.25 ± 0.03	611.25	_	Ribeiro et al. (2018)
Pluriflorae	R. albiceps Kunth.	20	10	5	_	_	_	Vanzela et al. (2000)
	R. albobracteata A.C.Araújo	20	10	5	_	_	Carrancas, MG	FUEL055369
	<i>R. consanguinea</i> (Kunth.) Kükenth.	10	5	5	_	_	-	Vanzela et al. (2000)
	<i>R. diamantina</i> (C.B. Clarke) Kükenth.	24	12	6	_	_	_	Luceño et al. (1998)
	<i>R. elatior</i> Kunth	12	6	6	_	_	_	Ribeiro et al. (2018)
	<i>R. globosa</i> (Kunth) Roem. and Schult.	24	dysploid	5	_	_	-	Luceño et al. (1998)
		36	dysploid	5	_	_	Chapadão do Céu, GO	DFUEL056063
		36	dysploid	5	-	_	_	Arguelho et al. (2012)
		37	dysploid	5	_	_	_	Luceño et al. (1998)
		43	dysploid	5	6.63 ± 0.03	3,242.07	Jaguariaíva, PR	FUEL056055
		45	dysploid	5	_	-	_	Arguelho et al. (2012)

		48	dysploid	5	_	-	-	Luceño et al. (1998)
		48	dysploid	5	_	_	Chapada dos Guimarães, MT	FUEL056126
		49	dysploid	5	9.16 ± 0.03	4,479.24	Tibagi, PR	FUEL056056
		50	dysploid	5	_	_	_	Ribeiro et al. (2018)
		58	dysploid	5	_	_	_	Arguelho et al. (2012)
		61	dysploid	5	11.32 ± 0.05	5,535.5	Carrancas, MG	FUEL056057
	R. riedeliana C.B. Clarke	12	6	6	_	_	_	Vanzela et al. (2000)
	R. rubra (Lour.) Makino	20	10	5	_	_	_	Hoshino (1987b)
	<i>R. speciosa</i> (Kunth.) Ku	20	10	5	_	_	-	Vanzela et al. (2000)
	<i>R. terminalis</i> var. <i>rosemariana</i> (D. A. Simpson)	10	5	5	0.81 ± 0.01	396.09	Tibagi, PR	FUEL056058
		50	25	5	-	_	_	Luceño et al. (1998)
	R. warmingii Boeck.	<i>c</i> . 30	-	5	_	_	-	Vanzela et al. (2000)
Pauciflorae	<i>R. armerioides</i> J. Presl and C. Presl.	10	5	5	-	_	-	Luceño et al. (1998)
Pauciflorae	R. barbata (Vahl) Kunth	10	5	5	_	_	_	Vanzela et al. (2000)
		10	5	5	1.28 ± 0.02	625.92	Parque Guariba, PB	FUEL056054
Longirostres	R. asperula	18	9	9	_	_	_	Arguelho et al. (2012)
	R. corymbosa (L.) Britton	18	9	9	_	_	_	Nijalingapa <i>et al.</i> (1978)

	18	9	9	-	-	-	Baquar (1978)
	18	9	9	_	_	_	Luceño et al. (1998)
	18	9	9	_	_	_	Arguelho et al. (2012)
	18	9	9	0.77 ± 0.02	376.53	Prado Ferreira, PR	FUEL056053
<i>R. gigantea</i> Link	18	9	9	-	-	_	Luceño et al. (1998)
	18	9	9	-	-	_	Arguelho et al. (2012)
<i>R. legrandii</i> Kükenth. ex Barros	18	9	9	_	_	_	Luceño et al. (1998)
R. pedersenii Guagl.	18	9	9	0.73 ± 0.04	356.97	Antonina, PR	FUEL056073
R. scutellata Griseb.	18	9	9	-	-	_	Luceño et al. (1998)
<i>R. triflora</i> Vahl	18	9	9	_	_	_	Luceño et al. (1998)

Note: Values preceded by *c*. have uncertain numbers of chromosomes.

Taxa	GenBank accession/Submission ID
<i>R. alba</i> (L.) Vahl	2312461
R. albiceps Kunth.	2343194
R. barbata (Vahl) Kunth	2343202
R. barrosiana Guagl.	2343212
R. brasiliensis Boeck.	2343222
R. breviuscula H.Pfeiff.	2343226
R. cephalotes (L.) Vahl	2343232
R. chinensis Böckeler	2343237
R. nervosa subsp. ciliata T.Koyama	2343297
R. ciliolata Boeck.	2343339
R. colorata (L.) Hitchc.	2343342
R. comata (L.) Roemer and Schultes	2343344
R. consanguinea (Kunth.) Kükenth.	2343347
<i>R. corymbosa</i> (L.) Britton	2343799
R. emaciata (Nees) Boeck.	2343804
R. exaltata Kunth	2343811
R. eximia (Nees) Boeck.	2343819
R. fusca (L.) Aiton f.	2343823
<i>R. gigantea</i> Link	2343828
<i>R. glaziovii</i> Boeckeler	2343846
R. globosa (Kunth) Roem. and Schult.	2343861
R. holoschoenoides (Rich.) Herter	2343865
R. marisculus Lindl. and Nees	2343868
R. microcarpa Baldw. ex A. Gray	2343872
R. pubera (Vahl) Boeckeler	2343874
R. radicans (Schltdl. and Cham.) H. Pfeiff.	2343882
<i>R. riedeliana</i> C.B. Clarke	2343883
R. riparia (Nees) Boeckeler	2343904
R. robusta (Kunth.) Boeck	2343906

Supplemental data 2. List of species of *Rhynchospora* and deposit numbers of the chloroplast sequences. Sequences were deposited in batches per species in the NCBI database. All genomes were made available by C. Buddenhagen (not yet published).

Таха	GenBank accession/Submission ID
R. rubra (Lour.) Makino	2343909
R. rugosa (Vahl) Gale	2343912
R. speciosa (Kunth.) Kükenth.	2343916
R. tenerrima Nees ex Spreng.	2343919
<i>R. tenuis</i> Link	2343923
R. wightiana (Nees) Steudel	2343929

Supplementary data 3. Chloroplast coding sequences used and the percentage of pairwise residues that are identical in the alignment.

cpDNA genes	% Pairwise identity
atpA	95.9
atp B	95.8
atpE	95.2
atp F	94.5
atpH	97.0
atpI	96.7
cemA	94.9
matK	88.7
ndhC	96.6
ndhD	95.0
ndhE	93.5
ndhF	93.5
ndhG	97.7
ndhJ	95.8
ndhK	95.2
petA	96.2
petB	97.5
petD	97.4
petG	97.2
petL	95.0
petN	97.4
psaA	97.1

cpDNA genes	% Pairwise identity
psaB	97.2
psaC	96.9
psal	96.9
psaJ	96.4
psbA	97.7
psbB	97.4
psbC	97.7
psbD	97.9
psbE	97.9
psbF	98.4
psbH	96.5
psbI	96.0
psbJ	97.3
psbK	97.5
psbL	98.4
psbM	98.5
psbN	97.1
psbT	97.0
psbZ	97.2
rbcL	96.7
rp114	95.8
rp116	95.6
rp122	93.2
rp136	94.2
rpoB	94.3
rpoC1	92.7
rpoC2	88.4
rps2	92.4
rps8	94.4
rps14	93.2
ycf3	96.1
ycf4	94.8

Supplemental data 4. Mitotic chromosomes of *Rhynchospora* sect. *Dichromena*. Metaphase of *R. breviuscula* 2n = 10 (A). Metaphase of *R. nervosa* with 2n = 10 from Chapada dos Guimarães (B). Pseudomonad of *R. nervosa* showing the degenerative domain (left) and the functional domain (right), which is at metaphase of pollen mitosis (n = 5) (C). Metaphase of *R. nervosa* with 2n = 10 from Florianópolis (D). Metaphase of *R. nervosa* with 2n = 30 from Cabo do Santo Agostinho (F). Metaphase of *R. nervosa* subsp. *ciliata* with 2n = 10 (G). Metaphase of *R. pubera* with 2n = 10 (H). Metaphase of *R. setigera* with 2n = 10 (G). All species present the same basic chromosome number x = 5, similar karyotypes in simmetry, and chromosome sizes decrease as chromosome numbers increase. Note that *R. setigera* has the smallest chromosomes, while *R. pubera* has the largest ones. Three ploidy levels are represented for *R. nervosa* (B–F).

Supplemental data 5. Mitotic chromosomes of *Rhynchospora* sect. *Tenues* (A–E) and sect. *Spermodontes* (F). Prometaphase of *R. tenuis* (2n = 4) (A). Metaphase of *R. tenuis* (2n = 5) (B). Prometaphases of *R. tenuis* (2n = 6) (C). Metaphase of *R. riparia* (2n = 10) (D). Metaphase of *R. tenuis* subsp. *austrobrasiliensis* (2n = 18) (E). Metaphase of *R. tenerrima* (2n = 20) (F). Note that sect. *Tenues* spp. display a variety of chromosome numbers, including dysploid karyotypes (A–C), dysploid associated with polyploidy (E) and the polyploid *R. tenerrima* (F) with much smaller chromosomes than other species from this section.

Supplemental data 6. Mitotic chromosomes of polyploids from four sections of *Rhynchospora* are shown: sect. *Glaucae* (A–C), sect. *Cephalotae* (D), sect. *Polycephalae* (E), and sect. *Longirostres* (F–G). Prometaphases of *R. rugosa, R. marisculus* and *R. dissitispicula* (respectively) from sect. *Glaucae*, all with 2n = 36 (A–C). Metaphase of *R. cephalotes* (sect. *Cephalotae*) with 2n = 18 (D). Metaphase of *R. holoschoenoides* (sect. *Polycephalae*) with 2n = 20 (E). Metaphase of *R. corymbosa* and prometaphase of *R. pedersenii* (sect. *Longirostres*), both with 2n = 18 (F–G). Three basic chromosome numbers are represented in this picture: x = 6 (A–C), x = 9 (D, F–G) and x = 5 (D). Higher ploidy species, from sect. *Glaucae* (A–C), and *R. cephalotes* (D) have considerably smaller chromosomes compared to any other *Rhynchospora* spp. shown herein.

Supplemental data 7. Mitotic chromosomes of *Rhynchospora* sect. *Pluriflorae*. Prometaphase of *R. terminalis* var. *rosemariana* with 2n = 10 (A). Metaphase of *R. albobracteata* with 2n = 20 (B). Metaphase of *R. globosa* with 2n = 36 (C). Metaphase (top) of *R. globosa* with 2n = 43, and interphase nucleus (bottom) showing numerous chromocenters (D). Metaphase of *R. globosa* with 2n = 48 (E). Metaphase of *R. globosa* with 2n = 49 (F). Prometaphase of *R. globosa* with 2n = 61 (G). Species from this section have chromosome numbers derived from x = 5 with *R. globosa* stands out as having the most diverse karyotype regarding chromosome number and size within a chromosome complement.

Supplemental data 8. C-CMA/DAPI banding in mitotic chromosomes and interphase nuclei of *Rhynchospora* sect. *Dichromena*. Prometaphase in *R. breviuscula* (2n = 10) with either DAPI⁰/CMA⁺ or DAPI⁻/CMA⁺ bands (A–B). Nucleus of *R. breviuscula* with DAPI⁺/CMA⁺ chromocenters (C–D). Prometaphases in *R. nervosa* from Carrancas with 2n = 20 (E–F), from Florianópolis with 2n = 10 (G–H), and from Chapada dos Guimarães, with 2n = 10 (I–J). CMA and DAPI heterochromatin are differently accumulated among chromosomes of *R. nervosa* from Chapada dos Guimarães (K–L), with chromosomes either exhibiting only DAPI⁺ bands, terminal and interstitial DAPI⁺/CMA⁺ bands, one interstitial DAPI⁺/CMA⁺ band, or none at all. Prometaphase in *R. nervosa* subsp. *ciliata* (2n = 10) showing many DAPI⁺/CMA⁺ signals, also visible in the nucleus (M–N). Prometaphase of *R. setigera* with DAPI⁺/CMA⁺ signals (I–J). Metaphase and prometaphase, respectively, in *R. nervosa* (2n = 20) (O–P). DAPI⁺ bands are all interstitial (O) while CMA⁺ bands are either interstitial or terminal (P). One chromosome with two large blocks of DAPI⁺/CMA⁺ heterochromatin, one terminal and the other subterminal, is depicted in detail (box).

Supplemental data 9. C-CMA/DAPI banding in mitotic chromosomes and interphase nucleus of *Rhynchospora* sect. *Tenues* (A–F) and sect. *Spermodontes* (G–H). Nucleus and prometaphase of *R. tenuis* with 2n = 6 showing the absence of DAPI⁺ signals, and only three terminal CMA⁺ ones (A–D). Metaphase in *R. tenuis* subsp. *austrobrasiliensis* (2n = 18) showing CMA⁺ signals (E–F). Note the presence of several CMA⁺ bands distributed throughout one chromosome. Prometaphase in *R. tenurina* (2n = 20) with DAPI⁺/CMA⁺ and DAPI⁺/CMA⁰ blocks (G–H).

Supplemental data 10. C-CMA/DAPI banding in mitotic chromosomes and interphase nuclei of *Rhynchospora*. Prometaphase of *R. rugosa* (2n = 36) showing almost undetectable DAPI⁺ spots, and four bright terminal CMA⁺ signals (**A–B**). Prometaphase of *R. corymbosa*. Note the large interstitial DAPI⁺/CMA⁺ blocks in several chromosomes, and some smaller terminal DAPI⁰/CMA⁺ ones (**C–D**). Prometaphase of *R. holoschoenoides* with no DAPI⁺ signals and some terminal and interstitial CMA⁺ blocks (**E–F**). Metaphasic chromosomes and interphasic nucleus of *R. terminalis* var. *rosemariana* showing four CMA⁺/DAPI⁻ signals, terminally located on the chromosomes (**G–H**). Metaphase of *R. albobracteata*, with many terminal CMA⁺ and fewer terminal DAPI⁺ bands (**I–J**). Prometaphasic chromosomes of *R. globosa* with 2n = 61 with several interstitial CMA⁺/DAPI⁺, some interstitial and terminal CMA⁺, and some interstitial and terminal DAPI⁺ bands (**K–L**).

Supplemental data 11. C-CMA/DAPI banding in different populations of *Rhynchospora globosa*. Prometaphase with 2n = 43, from Jaguariaíva (A–B). Chromosomes with different CMA/DAPI distribution are depicted (i–iv). Metaphase with 2n = 49, from Tibagi (C–D), showing two chromosomes with colocalized terminal CMA/DAPI bands and interstitial CMA⁺/DAPI⁰ bands (boxes). Prometaphase with 2n = 61, from Carrancas (E–F). Prometaphase with 2n = 36, from Chapadão do Céu (G–H). The individuals of this population have shown very faint DAPI⁺ signals as opposed to many CMA⁺ ones. Three chromosomes with different CMA⁺ band distributions are represented in boxes (v–vii). Note that, in three out populations, a unique large chromosome with many CMA⁺ bands stands out (B, D, H, iv and vii).

Supplemental data 12. RevBayes ChromEvol modelling of the ACN reconstruction along the Maximum Likelihood phylogenetic inference for Rhynchospora based on 54 chloroplast coding sequences (CDS) inferred with IQ-TREE, length: 51,383 bases. Density distributions show the estimated posterior values for the parameters rho, gamma and delta with their mean values in the legend.