

Figure S1. Phylogenetic trees of the genes involved in caffeine biosynthetic pathway. Maximum likelihood (ML) tree for each caffeine biosynthetic gene was constructed using MEGA 7.0 with 500 bootstrap replicates. CDS protein sequences of AMPD (AMP deaminase), SAMS (*S*-adenosyl-L-methionine synthase), MXMT (7-methylxanthine methyltransferase), TCS (tea caffeine synthase), XMT (xanthosine methyltransferase) and 5'-Nase (5'-nucleotidase) are from *Camellia sinensis*, the full names of abbreviations ahead of the protein names are as follows: Vv (*Vitis vinifera*), Ca (*Coffea arabica*), Tc (*Theobroma cacao*). ICS: theobromine synthase in *Camellia irrawadiensis*; PCS: theobromine synthase in *Camellia ptilophylla*.

Figure S2

Figure S2. Phylogenetic tree of Methyltransferases (MTs) CDS protein sequences from *Camellia* and *Coffea* plants. XMT: xanthosine methyltransferase; CaXMT1: xanthosine methyltransferase in *Coffea arabica*; TCS: tea caffeine synthase; MXMT: 7-methylxanthine methyltransferase; ICS: theobromine synthase in *Camellia irrawadiensis*; PCS: theobromine synthase in *Camellia ptilophylla*; *TCS1a-f* are six types of allelic variations of *TCS1*. TCS1a-f, TCS2-5, ICS2, and PCS2 are all from section *Thea*, CjCS1 from *Camellia. japonica*, CgCS1 and CgCS2 from *C. granthamiana*, ClCS1 from *C. lutchuensis*, CkCS1 from *C. kissi*, and CeCS2 from *C. chrysantha*. The phylogenetic tree was constructed using MEGA 7.0 with the neighbor-joining method. TCS-4 and TCS-8, downregulated significantly after fed with caffeine or theophylline, marked with a blue arrow.

Figure S3. Phylogenetic trees of the genes involved in caffeine catabolic pathway. Maximum likelihood (ML) tree for each caffeine biosynthetic gene was constructed using MEGA 7.0 with 500 bootstrap replicates. CDS protein sequences of XDH (xanthine dehydrogenase), UOX (urate oxidase), ALN (allantoinase) and URE (urease) are from *Camellia sinensis*, the full names of abbreviations ahead of the protein names are as follows: Ca (*Coffea arabica*), Tc (*Theobroma cacao*).

Figure S4

Figure S4. DEG numbers in different comparisons. The X-axis represents the difference comparison scheme of each group, and the Y-axis represents the corresponding DEG numbers.

Figure S5

Figure S5. Validation of gene expression in transcriptomic data regarding of caffeine synthesis. Data are presented as means \pm SD from at least three independent repeats. Two-tailed Student's *t*-tests were performed to compare data at each time point against the control (0 h or 48 h). Significant differences are labeled with asterisks (*P < 0.05, **P < 0.01), ns represents for no significance.

Α		М	1	2	3	4	5	6		
	KDa									
	120 —	9-3-1		-	-			-		
	60	1997	-	- 1	-	-/-	-	1		
	50 —									
	40 —									
		100	Street of Lot	1000		Territor I	ACRES 1	100 M		
в	30 —			-				-		
в			+						Motif A	
TCS1a	1 MELATAG	KVNEVLF	MNRGEGE	SSYAQ	NSSFTO		PALENA	VETLFSRDF	HL - GAL NAADL GCAAGP	TFAVIS 77
TCS1c	1 MG	KVNEVLF	MNRGEGE	ISYAQ	NSAFTQ	KVASMAR	MPALENA MPALENA	VETLFSKOF	HLLQALTAADLGCAAGP	TFAVIS 73
TCS1d TCS1e	1 MELATTG			SSYAQ	NSSFTQ	QVASMA	TPALENA	VETLESKOF	HL - GALNAVDLGCAAGP	TEAVIS 77
TCS1f	1 MELATTO	KVNEVLF	MNRGEGE	SSYAQ	NSSFTQ	QVASMA	TLALENA	VETLFSKDF	HL - QALNATDLGCAAGP	TFAVIS 77
TCS-4 TCS-4-1	1 MALATTO	KVNEVLF		SSYAQ	NSSETO	OVASMAG	OPALENA	VETLFSKDF	HL - QALNAADLGCAAGP	TFAVIS 77
TCS-8	1					MT	MPVL ENA	VETLFSKDF	HLLQALNAVDLGCAAGPT	TFTVIS 42
TCS-8-1	1					MT	MPVLENA		HLHQALNAVDLGCAAGPT	TEAVIS 42
103-0-2				Mo	tif B'				Motif C	
TCS1a	78 T I KRMME	KKCREL		VYLND	LF <mark>GND</mark> F		L <mark>SSE</mark> VIG	NKCEEVPCY	VMGVPGSFHGRLFPRNSL	HLVHSS 155
TCS1b TCS1c		KKCRELY	COTLELO					NKCEEVSCY	VMGVPGSFHGRLFPRNSL	HLVHSS 151
TCS1d	78 TIKRMME	KKCREL	CATLELO	VYLND	LFGNDF	NTLFKG	LSSEVIG	NKCEEVPCY	VMGVPGSFHGRLFPRNSL	HLVHSS 155
TCS1e	77 TTKRMME	KKCRELN				NTLEKG		NKCEEVPCY	VMGVPGSFHGRLFPRSSL	HLVHSS 154
TCS-4	78 T I KRMME	KKCRELN	COTLELC	VYLND	LFGNDF	NTLFKG		NKCEEVSCY	VMGVPGSFHGRLFPRNSL	HLVHSS 155
TCS-4-1	78 T I KRMME	KKCRELN						NKCEEVSCY	VMGVPGSFHGRPFPRNSL	HLVHSS 155
TCS-8-1	43 T I KRMME	KKCRELN	CATLELO	VYLND		NTLFKG	LOSKVVG	NKCEEVSCY	VVGVPGSFHGRLFPRNSL	HLVHSC 120
TCS-8-2	42 TIKRMME	KKCRELN	CQTLELC		L F <mark>GND</mark> F	NTLFKG		NKCEEVSCY	VMGVPGSFHGRLFPRNSL	HLVHSS 119
TCS1a			SREGLAL	NKGKI	ISKIS	PPVVRE	AYLSOFH	EDE TMELNA		OCSOPS 233
TCS1b	152 YSVHWL T	QAPKGLT	SREGLAL	NKGKI	r i s <mark>k</mark> ts		AYLSQFH	EDFTMFLNA	R <mark>SQ</mark> EVVP <mark>N</mark> GCMVLILHGR	OS <mark>SDPS</mark> 229
TCS1c TCS1d	152 YSVHWLT	OAPKGLT	SREGLAL		ISKTS	PPVVKK	AYL SOFH	EDFTMFLNA EDFTMFLNA	RSQEVVPNGCMVLILHGR RSQEVVPNGCMVLILRSR	OSSDPS 229
TCS1e	155 Y <mark>SVHWL</mark> T	QAPKGL T	SREGLAL	NKGK I Y	r i s <mark>k</mark> ts	PPVVRE	AYL SQFH	EDFTMFLNA	R <mark>SQ</mark> EVVP <mark>N</mark> GCMVLILRGR	KA <mark>SDPS</mark> 232
TCS1f	156 YSVHWLT 156 YSVHWLT	QAPKGLT QAPKGLT	SREGLAL		ISKTS	PPIVRE	AYL SQFH	EDFTMFLNA	RSQEVVPNGCMVLILRGR RSQEVVPNGCMVLILRGR	QSSDPS 233
TCS-4-1	156 YSVHWLT	QAPKGL T	SREGLAL	NKGKI	IS <mark>K</mark> TS	PPVVRE	AYLSQFH	EDFTMFLNA	R <mark>SQ</mark> EVV <mark>PN</mark> GCMVLILRGR	OCSDPS 233
TCS-8 TCS-8-1	121 YSVHWLT 121 YSVHWLT	QAPKGLT QAPKGLT	SKEGLAL	NKGKI	ISKIS ISKTS	PPVVRE	AYL SQFH	EDFTMFLNS	RSQEVVPNGCMVLILRGR RSQEVVPNGCMVLILRGR	CSDPS 198
TCS-8-2	120 YSVHWLT	QAPKGL T	SREGLAL	NKGK I Y	r i s <mark>k</mark> ts	PPVVRE	AYL SQFH	EDFTMFLNA	R <mark>SQE</mark> VVPNGCMVLIL <mark>R</mark> GR	OCSDPS 197
TCS1a	234 DMQSCFT	WELLAMA				NIPSYF/	ASLEEVK	D I VE <mark>R</mark> DG <mark>S</mark> F	TIDHIEGFOLDSVEMQEN	DKWVRG 311
TCS1b TCS1c	230 EMESCET	WELLAIA	TAELVSC			NVPSYM	SLEEVK		TIDHLEGFELDSLEMQEN	DKWVRG 307
TCS1d	234 DMQSCFT	WELLAKA	TAELVSC	GLIDE	DKLDAF	NIPCYF	SLEEVK		TIDHMEGFGLDSLQMEEN	DKWVRG 311
TCS1e TCS1f	233 DMESCET	WELLAIA	TAELVSC				SLEEVK		TIDHMEGFELDSLOMOEN	DKWVRG 310
TCS-4	234 DMQSCFT	WELLAMA	TAELVSC	GLIDE	OKLDTF	NIPSYF/	ASLEEVK	D I VERDG <mark>S</mark> F	TIDHIEGFOLDSLEMQEN	DKWVRG 311
TCS-4-1 TCS-8	234 DMQSCFT 199 DMGSCFT	WELLAMA	TAELVSC			NIPSYF/	ASLEEVKI SLEEVKI		TIDHIEGFDLDSLEMQEN TIDHMEGFELDSPEMQEN	DKWVRG 311
TCS-8-1	199 DMQSCFT	WELLAMA	TAELVSC	GLIDE	OKLDTF	NIPSYF/	ASLEEVK	D I VE <mark>R</mark> DG <mark>S</mark> F	TIDHIEGFOLDSLEMQEN	DKWVRG 276
TCS-8-2	198 DMQSCFT	WELLAMA	TAELVSC	GLIDE	KLDTF	NIPSYF/	ASLEEVK	DIVERDGSF	TIDHIEGFOLDSLEMQEN	DKWVRG 275
TCS18	312 EKFTKVV 308 DKFAKMV	RAFTEPI	I SNOFGE	EIMDKI		HIVVSDI	LEAELPK	TTSIILVLS		369 365
TCS1c	308 DKFAKMV	RAFTEPI	ISNOFGO			HILVSDI	LEAELPK	TTSIILVLS	KIVG	365
TCS1d	312 EKFTKVV 311 ENFTKVV	RAFTEPI	I SNOFGH	EIMOKI		HIVVSDI	EAKLPK	TTSIILVLS	K I DG	369 368
TCS1f	312 ENFTKVV	RAFTEPI	ISNOFGH	EIMDKI		HIVVSDI	LEAKLPK	TTSIILVLS	K I DG	369
TCS-4 TCS-4-1	312 EKFTKVV 312 EKFTKVV	RAFTEPI	I SNOFGH	EIMDKI	YDKFT	HIVVSDI	LEAKLPK	TTSIILVLS	KIDG	369 369
TCS-8	277 EKFATVA	RAFTEPI	ISNOFGH		YEKFT	HIVVSDI	EAKIPK	ITSIILVLS	KIVG	334
TCS-8-1 TCS-8-2	276 EKFTKVV	RAFTEPI	I SNQFGH	EIMDKI	YDKFT	HIVASDI	LEAKLPK	TTSIILVLS	KIVG	334 333

Figure S6

Figure S6. (A) SDS-PAGE analysis of protein extracts from *E. coli* expressing TCS-4-GST and TCS-8-GST fusion proteins. Lane M, standard protein ladder. Lane 1 and 2, crude protein from uninduced cells and induced cells of TCS-4-1. Lane 3 and 4, crude protein from uninduced cells and induced cells of TCS-8-1. Lane 5 and 6, crude protein from uninduced cells and induced cells of TCS-8-2. Red arrows indicate TCS-4-GST and TCS-8-GST fusion proteins.

(B) Multiple sequences alignment of tea caffeine synthase (*TCS*) genes. *TCS1a-f* are six types of allelic variations of *TCS1*. *TCS-4* and *TCS-8* are TEA015791.1 and TEA028050.1 respectively. The proposed SAM-binding motifs (A, B', and C) and conserved "YFFF-region" are shown by rectangular boxes. Substrate binding sites of methyl acceptor and methyl donor (SAM) are marked by • and • respectively. Additional active site residue is marked by red arrowhead. The amino acid residues marked by blue pentagram play a critical role in substrate recognition.