
   

Supplementary material 

1 Spatio-temporal properties of eye movements: description of algorithms and features 1 

This supplementary material describes the stimulus, algorithms and resulting features that are used in 2 
the spatio-temporal analysis of the properties of eye movements. The main algorithm described in 3 
this chapter is partially based on the Eye-Movement Cross-correlogram method originally introduced 4 
by Mulligan and colleagues (Mulligan et al., 2013). It constitutes an extension of it to the clinical 5 
domain. The spatio-temporal properties of eye movements are a collection of features extracted from 6 
the continuous gaze tracking of a stimulus. The stimulus trajectory is designed to keep the observers 7 
engaged, minimize learning effect and induce saccadic movements of different magnitude. All these 8 
characteristics are desirable in a test that aims to detect clinically relevant oculomotor abnormalities. 9 

Some of the derived spatio-temporal features of eye movements are more sensitive to physical 10 
changes in the stimuli (e.g. speed, contrast) while others are more sensitive to the state of the 11 
observer (e.g. underlying clinical condition). Taken together they quantify the performance of an 12 
observer’s visual system in a dynamic context. Noticeably, they do not correlate with static 13 
functional measures such as visual acuity and contrast sensitivity.  14 

  15 
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2 Algorithm description 16 

2.1 Schematic overview 17 

This section shows an overview of the process necessary to evaluate the spatio-temporal properties of 18 
eye movement. Figure S1 summarizes the steps necessary for the data acquisition, while Figure S2 19 
summarizes the feature extraction process. 20 

 21 

Figure S1. Schematic representation of the data acquisition process. 22 

 23 

 24 

Figure S2. Schematic representation of the feature extraction process. 25 



 3 

2.2 Stimulus properties 26 

2.2.1 Stimulus visualization 27 

 28 
Figure S3. An example of a Gaussian luminance blob used as a moving stimulus. 29 

2.2.2 Properties of the stimulus trajectory 30 
The stimulus trajectory consists of a constrained, random path. The two constraints are: (1) the 31 
stimulus trajectory must stay within the boundaries of the screen. (2) The stimulus trajectory cannot 32 
contain periodic autocorrelations.  33 

The stimulus trajectory is constructed by generating an array of velocity values where, at each time-34 
point, the velocity values for the horizontal and vertical components are drawn from a Gaussian 35 
distribution. This distribution is always zero-centered, and its standard deviation can be adjusted to 36 
modulate the final velocity of the stimulus. The values used in this study are sigma = ~ 64 deg/sec for 37 
the horizontal component and ~32.33 deg/sec for the vertical component. These values have been 38 
chosen empirically, to fit the screen’s aspect ratio and to produce a stimulus sufficiently hard to 39 
follow for healthy observers while challenging, yet not impossible to follow, for visually impaired 40 
observers. 41 

The velocity vector is low-pass filtered (cut-off = 10 Hz) by convolution with a Gaussian kernel such 42 
that excessive jitter is minimized. Subsequently, via temporal integration, velocities are transformed 43 

into positions of the stimulus 𝑠 𝑡 =  
𝑠!
𝑠! . In order to induce the observer to also perform saccadic 44 

movements in addition to the smooth pursuit, we created trajectories with random stimulus 45 
displacements. This is achieved by randomly juxtaposing epochs of 2 seconds each (Figure S4) taken 46 
from the original 6 trajectories. 47 

During a typical assessment, each observer is presented with 6 different trajectories of 20 seconds 48 
each per pursuit modality, one being with and the other without saccadic insertion, subsequently 49 
referred to as smooth and saccadic pursuit conditions, respectively. 50 
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 51 

Figure S4. Examples of the stimulus trajectory (horizontal component) over time for smooth and 52 
saccadic pursuit. 53 

2.3 Pre-processing of eye-tracking data 54 

The data acquired consists of time series of eye gaze positions 𝑝 𝑡 =  
𝑝!
𝑝!  expressed in visual field 55 

coordinates.  56 

Blinks and other artifacts are removed as follows: blink periods are identified by spikes in the vertical 57 
gaze velocity (first derivative of py > 300 deg/sec) followed by a plateau (first derivative of py = 0) or 58 
missing data. This specific artifact is caused by how video-based eye-trackers compute gaze position: 59 
when the eyelid is closing due to blinking, it partially covers the pupil, which is erroneously 60 
interpreted as a rapid shifting upwards (Figure S5-A). The closed eye is then recorded as missing 61 
data or as the last valid position recorded. Each blink period found is dilated by 5 samples on both 62 
sides. If the total data loss (due to blinks or otherwise) exceeds 25% of the trial duration, the entire 63 
trial is removed from further analysis. Lastly, the data in the blink-period is imputed by fitting an 64 
autoregressive model (Akaike, 1969) using 10 samples preceding and following each of the above-65 
defined blank periods (Figure S5-B). After all blinks are removed and missing data are filled, a 66 
Butterworth low-pass filter (half-power frequency = 0.5 Hz) applied to p(t) is used to remove any 67 



 5 

instrument noise from the recorded gaze positions. An example of time-series pre- and post-68 
processed with this “blink-filtering algorithm” is shown in Figure S5-C. 69 

 70 

Figure S5. A. Schematic representation of the eye-tracker gaze misinterpretation. When the eyelid 71 
partially occludes the pupil during a blink, the eye-tracker erroneously interprets the shortened pupil 72 
as being vertically displaced. B. Detail of a blink artifact. The red lines show the temporal window 73 
within which the data is removed, while the green lines show the temporal windows from which the 74 
data is pooled in order to interpolate the missing part. C. Example of a time-series before and after 75 
applying the blink-filtering algorithm. 76 

 77 
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2.4 Spatio-temporal features extraction 78 

This section describes how temporal, spatial and spatio-temporal features are extracted from the data. 79 
The parameters that reflect primarily the temporal aspects of the oculomotor behavior, such as 80 
response delay and velocity oscillations, are referred to as “temporal” features. The parameters that 81 
reflect the spatial aspects of the observer’s performance, like accuracy, are referred as “spatial” 82 
features. The “spatio-temporal” category contains the remaining parameters (here called observation 83 
noise variance and cosine dissimilarity) that are affected by both temporal delays and spatial 84 
inaccuracies. 85 

2.4.1 Temporal features 86 

The post-processed time-series of gaze positions p(t) and stimulus positions s(t) are transformed into 87 
their respective velocities vp(t) and vs(t) by taking their first-order temporal derivative.  88 

A normalized time-shifted cross-correlation is applied between vp(t) and vs(t) separately for the 89 
horizontal and vertical components (Figure S6-A shows an example of vp(t) and vs(t), horizontal 90 
component). The time-shift ranges from -1 to +1 sec with a step size of 1 inter-frame interval, which 91 
depends on the apparatus in use. Each of the 6 data-acquisitions of 20 seconds leads to two cross-92 
correlograms, one for the horizontal component and one for the vertical. The 6 resulting cross-93 
correlograms of each component are then averaged and the resulting averaged cross-correlogram 94 
(CCG, see Figure S6-B) is fitted with a Gaussian model, which returns the following parameters: 95 
amplitude, mean (µ), standard deviation (σ) and variance explained (R2). These parameters constitute 96 
the group of temporal features, a detailed description will follow in the section “Properties of spatio-97 
temporal features”). 98 

 99 

Figure S6. A. Example of ocular horizontal velocity in response to the tracking target. B. Example of 100 
a CCG resulting from the average of the 6 individual cross-correlograms obtained after each tracking 101 
trial. Black line shows the average CCG, red line shows the fitted Gaussian model, the remaining 102 
colored lines show the individual cross-correlograms. 103 

 104 
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2.4.2 Spatial features 105 

An array positional deviation between the stimulus and the eye 𝑑 𝑡 =  
𝑑!
𝑑!

 is computed for each 106 

time-point t in p(t) and s(t) as dx = px - sx and dy = py - sy (Figure S7-A shows an example of p(t), s(t) 107 
and d(t), horizontal component). Next, the resulting 6 arrays d(t)1…6  are concatenated (N.B.: not 108 
averaged) and a probability density distribution (PDD) is drawn from the resulting concatenated 109 
array (Figure S7-B). A Gaussian model is fitted to the PDD and, analogously to the temporal 110 
features, the parameters obtained are amplitude, mean (µ), standard deviation (σ) and variance 111 
explained (R2). These parameters constitute the group of spatial features; a detailed description will 112 
follow in the section “Properties of spatio-temporal features”). 113 

 114 

Figure S7. A. Example of ocular horizontal position in response to the tracking target. The 115 
deviations between stimulus and eye position are aggregated for all trials. B. Example of PDD 116 
resulting from the histogram of the aggregated positional deviations. The red line shows the fitted 117 
Gaussian model. 118 

2.4.3 Spatio-temporal features 119 

Observation noise variance: to compute this parameter, continuous tracking behavior is modeled by 120 
dynamic linear systems, with their solutions being provided by state-space models such as the 121 
Kalman filter (Bonnen et al., 2015).  122 

An example of these linear systems, as reported by Huk and colleagues (Huk et al., 2018), is as 123 
follows: 124 

𝑥! = 𝐹!𝑥!!! + 𝑤!;  𝑤!~ 𝑁(0,𝑄!) 

𝑦! = 𝐻!𝑥!!! + 𝑣!;  𝑣!~ 𝑁(0,𝑅!) 

where xt is the stimulus parameter tracked by the observer at time t (e.g., the coordinates of a moving 125 
target), Ft is the process transition matrix, wt is the process noise, yt is the noisy internal response 126 
(e.g., a pursuit eye movement), Ht is the observation model that maps the true state space to the 127 
observation space, and vt is the internal noise. Assuming that both the process noise (related to the 128 
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stimulus) and the internal noise (related to the observer) are Gaussian, the Kalman filter provides the 129 
following estimators: 130 

𝑥!|!!! = 𝐹!𝑥!!! 

𝑥! = 𝑥!|!!! + 𝐾!(𝑦! − 𝐻!𝑥!|!!!) 

where x̂t is the estimate of xt; x̂t|t−1 is the estimate of xt given all the information up to but not 131 
including the current time step, t; and Kt is the Kalman gain, which is calculated from estimates of the 132 
covariance (i.e., an estimate of the level of uncertainty in the system). A Kalman filter typically 133 
provides an estimate of the current unknown state of a system for which some structural properties 134 
are known, such as system noise and observer noise (wt and vt, respectively) and state-transition 135 
matrices (Ft and Ht, respectively). 136 

In our context, however, the “unknown state of the system” is not unknown at all: it is the recorded 137 
position of the gaze in response to the motion of the target at a given time. Therefore, starting from 138 
the gaze position in response to the moving target, it is possible to estimate the observation noise 139 
variance, which reflects the overall noisiness of the observer. 140 

To do so, we reversed the Kalman filter application as described by Bonnen and colleagues (Bonnen 141 
et al., 2015), while also assuming that the observation model that maps the true state space to the 142 
observation space Ht is equal to 1 (i.e. assuming that the oculomotor system is a simple linear system 143 
without nonlinear dynamics).  144 

When the observation noise variance is low relative to the target displacement variance (i.e., target 145 
visibility is high), the difference between the previous position estimate and the current noisy 146 
observation is likely to be due to changes in the position of the target. That is, the observation is 147 
likely to provide reliable information about the target position. As a result, the previous estimate will 148 
be given little weight compared to the current observation. Tracking performance will be fast and 149 
have a short lag. On the other hand, if the observation noise variance is high relative to the target 150 
displacement variance (i.e., target visibility is low), then the difference between the previous position 151 
estimate and the current noisy observation is likely driven by observation noise. In this scenario, little 152 
weight will be given to the current observation while greater weight will be placed on the previous 153 
estimate. Tracking performance will be slow and have a long lag (Bonnen et al., 2015).  154 

Dissimilarity: this parameter entails a measure of dissimilarity between the two vectors (A) stimulus 155 
positions and (B) gaze position.  In the context of comparing tracking coordinates, the cosine 156 
similarity of two positional vectors is bounded between 0 and 1, therefore the dissimilarity is 157 
computed as the inverse of the cosine similarity: 158 

1−
𝐴!!

! 𝐵!

𝐴!!!
! 𝐵!!!

!

 

It has the useful property of being unaffected by the length of the vectors. Since it is computationally 159 
inexpensive, it is a useful feature to evaluate the performance of an observer in real-time. In healthy 160 
observers, it usually correlates strongly with the Observation noise variance. 161 
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3 Properties of the spatio-temporal features 162 

Table S1 provides details about each spatio-temporal feature: 163 

Feature Name Description Value 
Range 

F1: CCG amplitude 
Maximum correlation between stimulus and eye 
velocities.  
Higher values → better performance 

[-1 1] 

F2: CCG mean Lag between stimulus and eye (in ms).  
Lower values → better performance [0 ∞] 

F3: CCG standard deviation 

Temporal uncertainty: window of temporal integration 
that the observer needs in order to track the stimulus 
(in ms).  
Lower values → better performance 

[0 ∞] 

F4: CCG variance explained Consistency of tracking performance across trials. 
Higher values → better performance [0 1] 

F5: PDD amplitude Most frequent positional deviation.  
Higher values → better performance [0 1] 

F6: PDD mean Spatial bias. 
Lower values → better performance [0 ∞] 

F7: PDD standard deviation 
Positional uncertainty: spread of the positional 
deviations. 
Lower values → better performance 

[0 ∞] 

F8: PDD variance explained Normality of the positional deviation distribution.  
Higher values → better performance [0 1] 

F9: Observation noise 
variance 

Sensory noise estimated by measuring the variance of 
the observational noise with a Kalman filter(Bonnen 
et al., 2015). 
Lower values → better performance 

[0 ∞] 

F10: Dissimilarity 
Inverse of cosine similarity between gaze and 
stimulus vectors of positions. 
Lower values → better performance 

[0 1] 

Table S1. Name and details of the spatio-temporal features used to quantify the observer’s tracking 164 
performance. Each feature is computed separately for the horizontal and vertical components of the 165 
eye movements (CCG: cross-correlogram; PDD: positional deviations distribution). 166 

 167 
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Together, all these features constitute our feature-space. An overview of the correlations normally 168 
present in the feature-space is shown in Figure S8. This example is built using the data from our 169 
control group of participants. In a healthy population, certain features highly correlate (or anti-170 
correlate) amongst each other or between their respective horizontal and vertical counterparts. 171 
Usually, highly correlated features within a dataset are not particularly useful (as they provide 172 
redundant information). However, the presence or absence of expected correlations in a group of 173 
observers could provide valuable insights. A noticeable example is feature F4 (variance explained of 174 
the gaussian fit to the CCG). By itself, this feature is very uninformative in the healthy population: 175 
during smooth pursuit condition it does not correlate with any other feature (see Figure 8-A, left, 176 
lines 4 and 14) as it often shows a ceiling-effect (see Figure S8-B, panel F4, all values are above 177 
0.90). However, the introduction of saccadic displacements removes the ceiling-effect in the vertical 178 
component (see Figure S8-C, panel F4, y axis) and increases the correlations with other features 179 
(Figure S8-A, right, line 14). This peculiar behavior makes this feature an excellent anomaly detector 180 
when testing different populations.  181 

On the other hand, features such as F2 show very consistent correlations between the horizontal and 182 
vertical components and with other features as well. It is thus suitable for measuring performance 183 
also in a within-subject context. 184 

Overall, all spatio-temporal features contribute to creating a unique “oculomotor fingerprint” of the 185 
observer who performed the test, which in turn can be used as a powerful, yet simple, screening tool. 186 

Lastly, in healthy controls, the spatio-temporal features of eye-movements are independent from 187 
other measures of visual function, such as visual acuity and contrast sensitivity (see Figure S9). The 188 
cumulative histogram of the Spearman’s rank coefficients is not different from that of the null 189 
hypothesis, which was obtained by randomizing the correlation matrix and calculating the 95% 190 
confidence intervals with a permutation test. Therefore, we conclude that neither visual acuity (VA) 191 
nor contrast sensitivity (CS) is correlated with any of the spatio-temporal properties measured with 192 
continuous tracking, both for the smooth pursuit and saccadic pursuit modalities. 193 
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 194 

Figure S8. A. Correlation matrices between all spatio-temporal features. B. Correlations (or lack 195 
thereof) between horizontal and vertical components of each spatio-temporal feature obtained during 196 
smooth pursuit tracking. C. Same as B, but for feature values obtained during saccadic pursuit 197 
tracking. 198 

 199 

 200 
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 201 

Figure S9. Correlation matrix between spatio-temporal features and visual functions. VA = visual 202 
acuity, CS = contrast sensitivity, SM = smooth pursuit, SC = saccadic pursuit, L = left eye, R = right 203 
eye. 204 
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