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Supplementary Document 
A Bayesian account of generalist and specialist formation under the 

Active Inference framework  

 

Appendix A: Bayesian model comparison 

A.1 Derivations of Bayesian Model Comparison 

We start off with the following approximate equalities of the approximate posterior of a set of 

parameters (50): 

𝛿𝛿𝑄𝑄𝐹𝐹 = 0  

⇒ 𝑄𝑄(𝜃𝜃) ≈ 𝑃𝑃(𝜃𝜃|𝑜𝑜�)          (Equation A1) 

⇒ −𝐹𝐹[𝑃𝑃(𝜃𝜃)] ≈ ln𝑃𝑃(𝑦𝑦)  

𝜃𝜃 = (𝜃𝜃1,𝜃𝜃2, … )  is used here to denote any arbitrary set of parameters, and 𝛿𝛿𝑄𝑄𝐹𝐹 = 0  means the 

variation of the free energy with respect to the approximate posterior is zero (i.e. a stationary point 

of the free energy). For the purpose of policy learning as discussed in this paper, it would be identical 

to substitute the tuple of concentration parameters, 𝑒𝑒, in lieu of 𝜃𝜃 below. 

In order to perform Bayesian model comparison (BMC), we define our two models: a full model (in 

this case, the model the agent used in the previous day), and a reduced model (model constructed 

during BMC which the agent compares against the full model). We define the probabilities under the 
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two models with the 𝑃𝑃𝐹𝐹  and 𝑃𝑃𝑅𝑅 , respectively. Crucially, we make a key assumption, that the likelihood 

of observing the outcomes is equally likely under both models: 

𝑃𝑃𝐹𝐹(𝑜𝑜� |𝜃𝜃) = 𝑃𝑃𝑅𝑅(𝑜𝑜�|𝜃𝜃)          (A2) 

We begin by writing out Bayes rule to both the full and reduced models: 

𝑃𝑃𝑅𝑅(𝜃𝜃|𝑜𝑜�) 𝑃𝑃𝑅𝑅(𝑜𝑜�)
𝑃𝑃𝐹𝐹(𝜃𝜃|𝑜𝑜�) 𝑃𝑃𝐹𝐹(𝑜𝑜�)

=
𝑃𝑃𝑅𝑅(𝑜𝑜�|𝜃𝜃) 𝑃𝑃𝑅𝑅(𝜃𝜃)
𝑃𝑃𝐹𝐹(𝑜𝑜�|𝜃𝜃) 𝑃𝑃𝐹𝐹(𝜃𝜃)

 

Using the equality in Equation A2 to cancel the likelihood terms, and rearranging, we arrive at the 

following equality: 

𝑃𝑃𝑅𝑅(𝜃𝜃|𝑜𝑜�) = 𝑃𝑃𝑅𝑅(𝜃𝜃)
𝑃𝑃𝐹𝐹(𝜃𝜃)

 𝑃𝑃𝐹𝐹(𝑜𝑜�)
𝑃𝑃𝑅𝑅(𝑜𝑜�)

 𝑃𝑃𝐹𝐹(𝜃𝜃|𝑜𝑜�)         (A3) 

Integrating both sides: 

∫𝑃𝑃𝑅𝑅(𝜃𝜃|𝑜𝑜�)𝑑𝑑𝜃𝜃 = 1 = ∫ 𝑃𝑃𝑅𝑅(𝜃𝜃)
𝑃𝑃𝐹𝐹(𝜃𝜃)

 𝑃𝑃𝐹𝐹(𝑜𝑜�)
𝑃𝑃𝑅𝑅(𝑜𝑜�)

 𝑃𝑃𝐹𝐹(𝜃𝜃|𝑜𝑜�)  𝑑𝑑𝜃𝜃  

1 = 𝑃𝑃𝐹𝐹(𝑜𝑜�)
𝑃𝑃𝑅𝑅(𝑜𝑜�)

  ∫𝑃𝑃𝐹𝐹(𝜃𝜃|𝑜𝑜�) 𝑃𝑃𝑅𝑅(𝜃𝜃)
𝑃𝑃𝐹𝐹(𝜃𝜃)

  𝑑𝑑𝜃𝜃  

𝑃𝑃𝑅𝑅(𝑜𝑜�) =  𝑃𝑃𝐹𝐹(𝑜𝑜�)∫𝑃𝑃𝐹𝐹(𝜃𝜃|𝑜𝑜�) 𝑃𝑃𝑅𝑅(𝜃𝜃)
𝑃𝑃𝐹𝐹(𝜃𝜃)

 𝑑𝑑𝜃𝜃         (A4) 

 

𝑃𝑃𝑅𝑅(𝑜𝑜�) ≈  𝑃𝑃𝐹𝐹(𝑜𝑜�)∫𝑄𝑄𝐹𝐹(𝜃𝜃) 𝑃𝑃𝑅𝑅(𝜃𝜃)
𝑃𝑃𝐹𝐹(𝜃𝜃)

 𝑑𝑑𝜃𝜃     [Substituting in A1] 

ln𝑃𝑃𝑅𝑅(𝑜𝑜�) ≈ ln∫𝑄𝑄𝐹𝐹(𝜃𝜃) 𝑃𝑃𝑅𝑅(𝜃𝜃)
𝑃𝑃𝐹𝐹(𝜃𝜃)  𝑑𝑑𝜃𝜃 + ln𝑃𝑃𝐹𝐹(𝑜𝑜�)   [Taking the logarithm] 
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 = ln𝐸𝐸𝑄𝑄𝐹𝐹 � 
𝑃𝑃𝑅𝑅(𝜃𝜃)
𝑃𝑃𝐹𝐹(𝜃𝜃) � + ln𝑃𝑃𝐹𝐹(𝑜𝑜�)  

ln𝑃𝑃𝑅𝑅(𝑜𝑜�) ≈ −𝐹𝐹[𝑃𝑃𝑅𝑅(𝜃𝜃)] ≈ ln𝐸𝐸𝑄𝑄𝐹𝐹 � 
𝑃𝑃𝑅𝑅(𝜃𝜃)
𝑃𝑃𝐹𝐹(𝜃𝜃) � − 𝐹𝐹[𝑃𝑃𝐹𝐹(𝜃𝜃)] [Substituting in A1]   (A5) 

 

Equation A5 tells us that the model evidence of any reduced model can be evaluated given the prior 

of the reduced and full models, and the evidence of the full model. Applying the above knowledge to 

the e concentration parameters defined previously, we have the following: 

 𝑃𝑃𝐹𝐹(𝜃𝜃) = 𝐷𝐷𝐷𝐷𝐷𝐷(𝑒𝑒𝐹𝐹) Prior of the full model 

 𝑃𝑃𝑅𝑅(𝜃𝜃) = 𝐷𝐷𝐷𝐷𝐷𝐷(𝑒𝑒𝑅𝑅) Prior of the full model 

 𝑄𝑄𝐹𝐹(𝜃𝜃) = 𝐷𝐷𝐷𝐷𝐷𝐷(𝒆𝒆𝑭𝑭) Prior of the full model 

 𝑄𝑄𝐹𝐹(𝜃𝜃) = 𝐷𝐷𝐷𝐷𝐷𝐷(𝒆𝒆𝑹𝑹) Prior of the full model 

In order to compare relative model evidence, we look at the log ratio of the reduced and full model 

evidence, which is the same as the difference in their free energy (free energy of the full model minus 

the reduced): 

Δ𝐹𝐹 = ln
𝑃𝑃𝑅𝑅(𝑜𝑜�)
𝑃𝑃𝐹𝐹  (𝑜𝑜�) = ln𝑃𝑃𝑅𝑅(𝑜𝑜�) − ln𝑃𝑃𝐹𝐹(𝑜𝑜�) 

In the discrete case, the above can simply be re-written with Beta functions Β(⋅) (50): 

Δ𝐹𝐹 = lnΒ(𝑒𝑒𝐹𝐹) − lnΒ(𝑒𝑒𝑅𝑅) − lnΒ(𝒆𝒆𝑭𝑭) + lnΒ(𝒆𝒆𝑭𝑭 + 𝑒𝑒𝑅𝑅 − 𝑒𝑒𝐹𝐹)      (A6) 
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We can apply the above to any reduced model to evaluate its evidence relative to the full model. 

Intuitively, the higher Δ𝐹𝐹 is, the more evidence the reduced model has. We can evaluate Δ𝐹𝐹 for an 

arbitrarily large number of reduced models. 

In the case of Bayesian model selection, the reduced model with the highest model evidence is selected 

as the optimal model. That is to say, given a vector of the relative free energy for each reduced model, 

ΔF , we pick the 𝑒𝑒𝑅𝑅  which gives max (ΔF) . However, since we are interested in Bayesian model 

averaging, we need to compute the probability of each reduced model within the entire reduced 

model space we defined: 

𝒎𝒎 = σ(ΔF)           (A7) 

where 𝒎𝒎𝑖𝑖 = 𝑄𝑄(𝑚𝑚 = 𝐷𝐷)  is the posterior probability of each reduced model and 𝜎𝜎  is the softmax 

function, 𝜎𝜎(𝑥𝑥) = exp (𝑥𝑥)
∑exp (𝑥𝑥)

, which squashes the set of values in vector ΔF into a range that is between 

[0, 1] and sums to 1 (i.e. forms a probability distribution). After the probability of each reduced model 

is computed, we simply take a weighted sum of each reduced model parameters, weighted by their 

probability, to get the final, Bayesian model averaged parameters: 

𝒆𝒆𝑖𝑖,𝐵𝐵𝐵𝐵𝐵𝐵 = 𝒎𝒎 ⋅ 𝒆𝒆𝑖𝑖,𝑅𝑅          (A8) 

where 𝒆𝒆𝑖𝑖,𝑅𝑅 is a vector of the i-th concentration parameters for each reduced model, and 𝒆𝒆𝑖𝑖,𝐵𝐵𝐵𝐵𝐵𝐵 is the 

i-th Bayesian model averaged concentration parameter over all reduced models. 
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A.2 Example application of Bayesian model comparison to maze task 

Taking our “two-step” maze task for example, let us imagine an agent that repeatedly pursues policy 

1 (Fig 3B) throughout the day. At the end of the day, having completed 8 trials, its e parameter for 

policy 1 has increased from a prior concentration of 1 to a posterior concentration of 9 (Fig A1a). The 

agent then performs model comparison (“sleep”), where it entertains possible combinations of 

reduced models for prior e parameters (Fig A1b) and computes the model evidence for each reduced 

model using the derivations shown in Appendix section A.1 (the resulting model evidence is shown 

in Fig A1c). Specifically, it tests different initial parameters (Fig A1b) in lieu of the true prior 

parameters used (Fig A1a, left) to see whether these provide better explanations for the observed 

data (Fig A1a, right). 

The reduced models (Fig A1b) are constructed via strengthening certain policies (increasing their e 

parameters, akin to synaptic strengthening) and weakening others (decreasing e parameters, akin to 

synaptic pruning). The point is to construct many reduced models such that the model space is more 

likely to contain many good models, and a search through them will pick up those good models 

(hypothetically, the reduced model space can be arbitrarily large). In our case, we increment the e 

parameter of the to-be-strengthened policies by 8 and divide the e of to-be-weakened policies by 2 

or 4. The reason for this numerical manipulation is twofold. Firstly, it is more neurobiologically 

plausible to weaken policies (e.g. via weakening synaptic connections, or in our case, decreasing the 

e parameter by dividing) over time as supposed to “deleting” policies altogether when they are not 

used. In practice, when the probability of a policy becomes sufficiently small, we can associate this 

with the pruning of the synapses. Secondly, it is beneficial to construct a large reduced model space, 

which helps Bayesian model reduction to find a more optimal reduced model. In total, each time 

model reduction occurs, it iterates through all combinations of reduced policies (since we have 7 
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policies and we can either strengthen or weaken each one, we have 27 = 128 combinations) with the 

two levels of pruning discussed above for a total of 256 reduced models to average over. Figure A1b, 

left is an example of a reduced model, in which policy 1 is strengthened (more probable), and all 

other policies weakened. This is the reduced model with the best model evidence, since it 

corresponds with the agent’s action during the day (Fig A1a, right). 

Now that the probability of each model within the reduced model space is computed (Equation A7, 

visualized in Fig A1c), we perform Bayesian model averaging get a weighted sum over all the models 

(Equation A8). The resulting prior (𝑒𝑒𝐵𝐵𝐵𝐵𝐵𝐵) is the optimal set of prior parameters that the agent could 

have started the previous day with, given the reduced models considered. Finally, the amount of 

learning (i.e. increases in e for policy 1 by 8) is added to this “optimised prior” to get the most optimal 

posterior e concentration, (Fig A1d, right), which is used as the prior concentration for the 

subsequent day. This is the posterior that the mouse would have reached, had it started with the best 

prior. This process repeats after each day of training, where the agent continually optimises its 

parameters to inform better future policy selection. 
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A.3 Relevant Notations  

The Markov Decision Process is specified using the following matrices 

𝑨𝑨𝒊𝒊𝒊𝒊 = 𝑃𝑃(𝑜𝑜𝜏𝜏 = 𝐷𝐷 | 𝑠𝑠𝜏𝜏 = 𝑗𝑗)    state-outcome mapping 

𝑩𝑩(𝒖𝒖)𝒊𝒊𝒊𝒊 = 𝑃𝑃(𝑠𝑠𝜏𝜏+1 = 𝐷𝐷| 𝑠𝑠𝜏𝜏 = 𝑗𝑗 ,𝑢𝑢 = 𝜋𝜋(𝜏𝜏))  state-state transition 

𝑪𝑪𝝉𝝉,𝒊𝒊 = 𝑃𝑃(𝑜𝑜𝜏𝜏 = 𝐷𝐷)     outcome preference  

𝑫𝑫𝒊𝒊 = 𝑃𝑃(𝑠𝑠1 = 𝐷𝐷)      belief about initial states 

𝑬𝑬𝒊𝒊 = 𝑃𝑃(π = i |E)     independent policy 

We define the (free energy independent) prior and posterior distributions over the parameter 𝐸𝐸 

(which determines the policy space) as: 

 𝑃𝑃(𝐸𝐸) = 𝐷𝐷𝐷𝐷𝐷𝐷(𝑒𝑒)  

 𝑄𝑄(𝐸𝐸) = 𝐷𝐷𝐷𝐷𝐷𝐷(𝒆𝒆) 

 𝒆𝒆 = 𝑒𝑒 + 𝝅𝝅 

Where 𝑒𝑒 = (𝑒𝑒1, … , 𝑒𝑒𝑘𝑘) are the prior concentration parameters, 𝝅𝝅 = (𝝅𝝅𝟏𝟏,𝝅𝝅𝟐𝟐, … ,𝝅𝝅𝒌𝒌) is the posterior 

probability that an agent observes itself pursuing each of the (𝑘𝑘) policies, and 𝒆𝒆 is the posterior 

concentration parameter. We therefore have the prior (free energy independent) expectation about 

policies: 

 𝐸𝐸� = 𝔼𝔼𝑃𝑃(𝐸𝐸)[ln𝑃𝑃(𝜋𝜋|𝐸𝐸)] 

Finally, policy inference is: 

 𝝅𝝅 = 𝜎𝜎(𝑬𝑬� − 𝑭𝑭 − 𝛾𝛾 ⋅ 𝑮𝑮) 
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Where 𝑭𝑭 is the free energy for each policy based on past time points and 𝑮𝑮 is the expected free energy 

for future time points (modulated by a precision term 𝛾𝛾). At the end of the trial, the prior 𝑬𝑬� is updated 

to the posterior 𝔼𝔼𝑄𝑄(𝐸𝐸)[ln𝑃𝑃(𝜋𝜋|𝐸𝐸)], which is used as the new prior for the next trial. 
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Appendix B: Software note 

The simulation is constructed using MATLAB 

(https://www.mathworks.com/products/matlab.html) and the SPM12 software package 

(https://www.fil.ion.ucl.ac.uk/spm/). Specifically, the DEM toolbox in SPM12 is used to run the 

Active Inference simulations. All of the scripts used specifically for this experiment can be found on 

GitHub (https://github.com/im-ant/ActiveInference_PolicyLearning). 

 

 

  

https://www.mathworks.com/products/matlab.html
https://www.fil.ion.ucl.ac.uk/spm/
https://github.com/im-ant/ActiveInference_PolicyLearning
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Figure A1: Bayesian Model Averaging (BMA). (a) The effect of training on the e concentration 

parameters. The agent pursues policy 1 eight times during the day, and subsequently the e parameter 

for its policy 1 incremented from 1 to 9. (b) Example of reduced models. In our case, reduced models are 
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prior e concentration parameters that try to better the posterior e concentration observed at the end of 

the previous day (i.e. part A, right). (c) Examples of model evidence. We see the reduced (prior) model 

increased e concentration for policy 1, and decreased concentration for all other policies received the 

highest model evidence (i.e. it is the best reduced model), whereas models that do the opposite have 

low model evidence. (d) Updating the prior e concentration after BMA.  The agent first computes the 

BMA-ed prior e concentration (left bar graph), then adds on the amount of learning done during the day 

to computed the BMA-ed posterior e concentration, which is used as the prior for the next day.  
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