Supporting Information

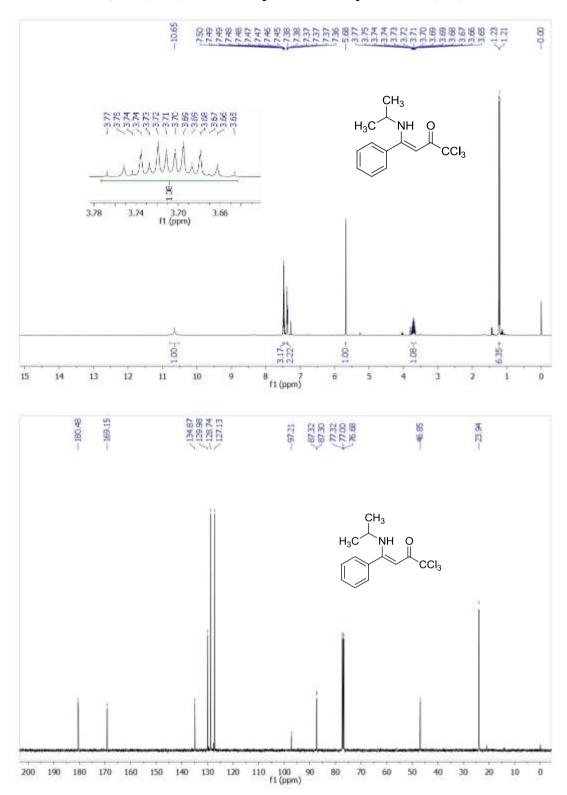
Novel Alkyl(aryl)-Substituted 2,2-Difluoro-6-(trichloromethyl)-2H-

1,3,2-oxazaborinin-3-ium-2-uides: Synthesis, Antimicrobial Activity,

and CT-DNA Binding Evaluations

Wilian C. Rosa,^a Inaiá O. Rocha,^a Melissa B. Rodrigues,^a Helena S. Coelho,^{b,c} Laura B. Denardin,^b Pauline C. Ledur,^b Nilo Zanatta,^a Thiago V. Acunha,^d Bernardo A. Iglesias^{d*} and Helio G. Bonacorso^{a*}

^a Núcleo de Química de Heterociclos (NUQUIMHE), Departamento de Química, Universidade Federal de Santa Maria, 97.105-900, Santa Maria, RS, Brazil..


^b Laboratório de Pesquisas Micológicas (LAPEMI), Departamento de Microbiologia e Parasitologia, Universidade Federal de Santa Maria, 97105-900, Santa Maria, RS, Brazil.

^c Instituto Federal de Educação, Ciência e Tecnologia Farroupilha, Santa Maria, RS, Brazil.

^d Laboratório de Bioinorgânica e Materiais Porfirínicos, Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, 97105-900, RS, Brazil.

Table of Contents

1.	NMR spectra of compounds 4a-i, 5e, 6a-i and 7e	S3
2.	HMRS spectra of compounds 4c, 4d, 4e and 4g	S33
3.	Single Crystal X-Ray Data of compounds 4g and 6e	S37
4.	UV-Vis spectra	S45
5.	Steady-state emission fluorescence spectra	S47
6.	UV-Vis DNA titrations spectra	S48
7.	Competitive EB-DNA assays by emission fluorescence spectra	S53
8.	TD-DFT Calculations for compounds 6a-i, 7e	S58
9.	Antimicrobial assays	S89
10.	Cytotoxicity assays	S91

1. ¹H-, ¹³C-, ¹¹B-, ¹⁹F-NMR spectra of compounds 4a-i, 5e, 6a-i and 7e.

Figure S1. ¹H- and ¹³C-NMR in CDCl₃ at 400 and 101 MHz, respectively of compound 4a.

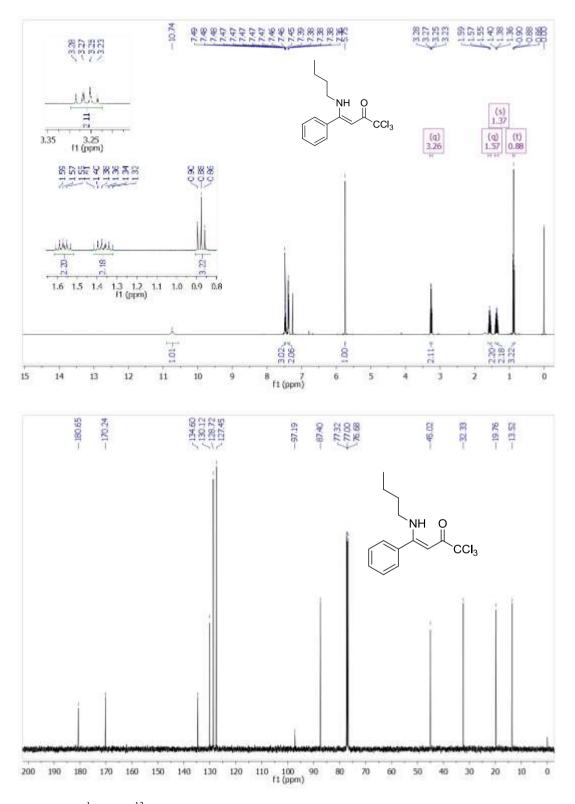
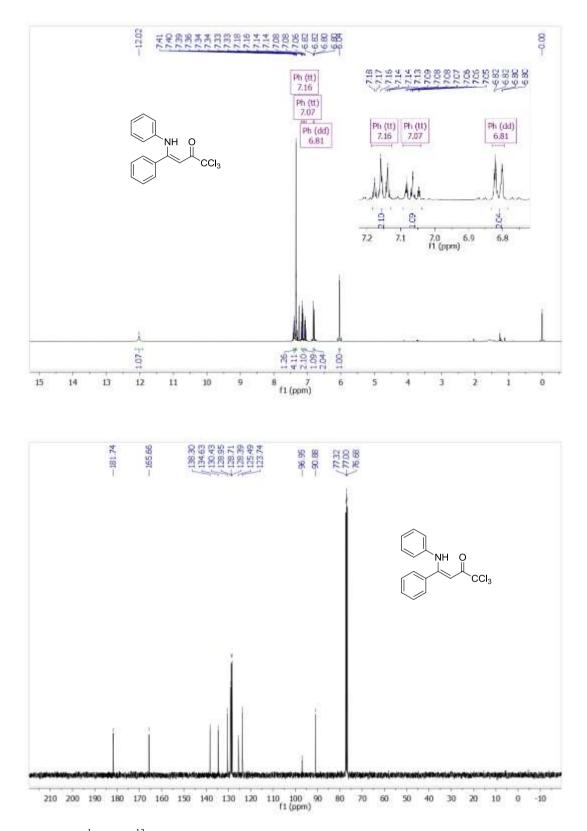



Figure S2. ¹H- and ¹³C-NMR in CDCl₃ at 400 and 101 MHz, respectively of compound 4b.

Figure S3. ¹H- and ¹³C-NMR in CDCl₃ at 400 and 101 MHz respectively of compound **4c**.

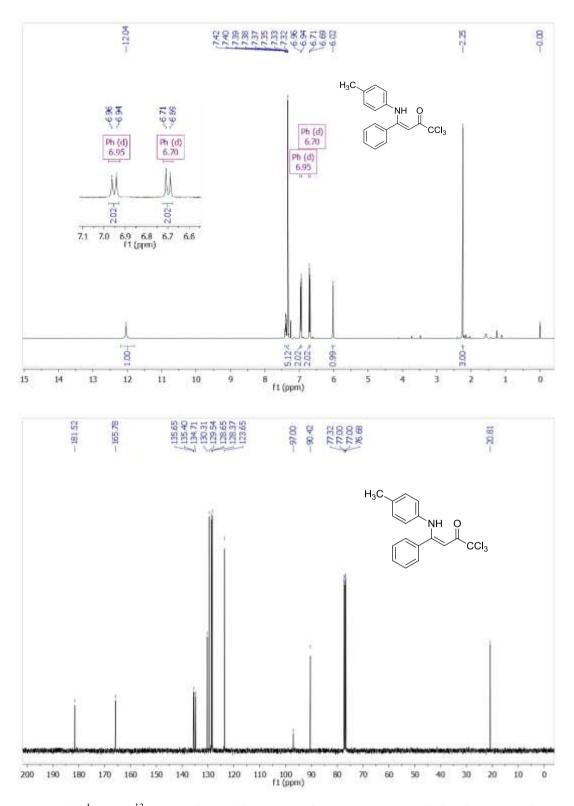


Figure S4. ¹H- and ¹³C-NMR in CDCl₃ at 400 and 101 MHz, respectively of compound 4d.

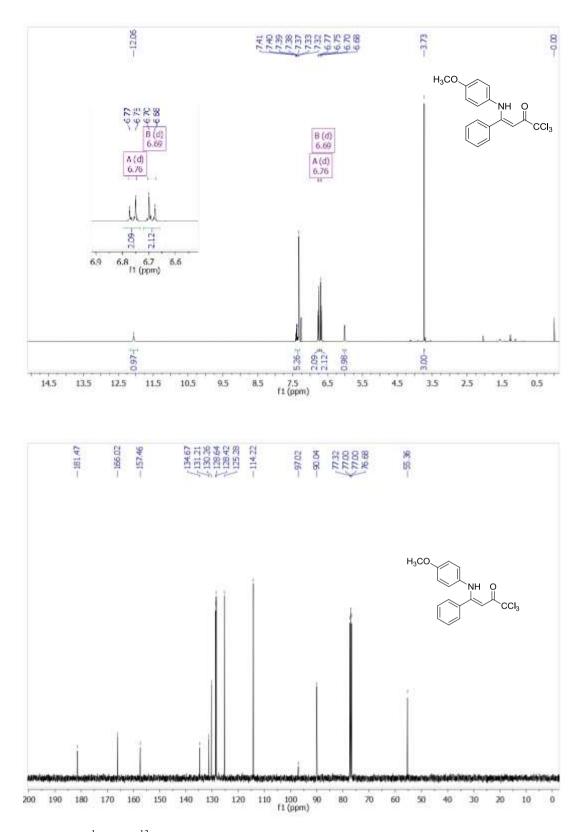


Figure S5. ¹H- and ¹³C-NMR in CDCl₃ at 400 and 101 MHz, respectively of compound 4e.

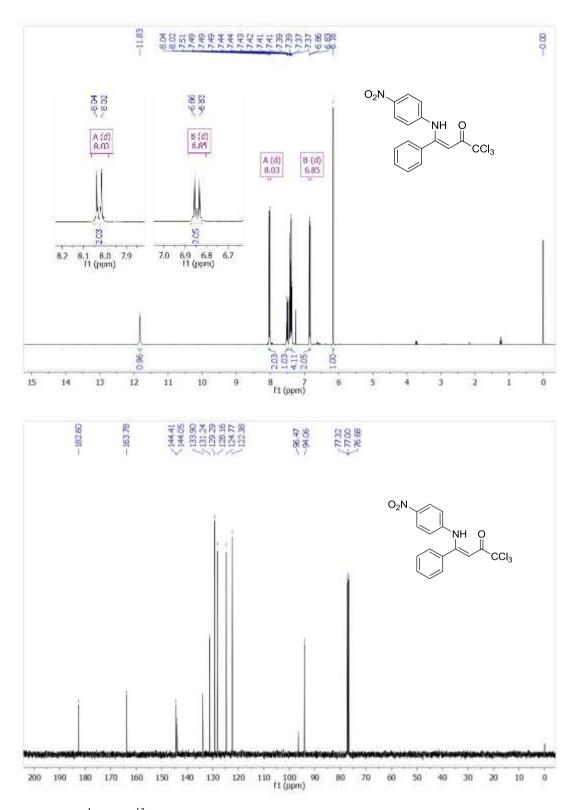


Figure S6. ¹H- and ¹³C-NMR in CDCl₃ at 400 and 101 MHz, respectively of compound 4f.

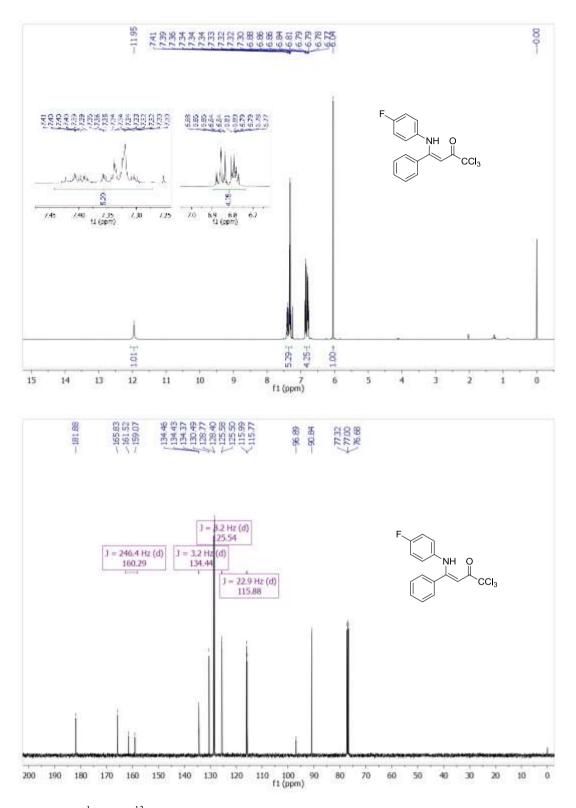


Figure S7. ¹H- and ¹³C-NMR in CDCl₃ at 400 and 101 MHz, respectively of compound 4g.

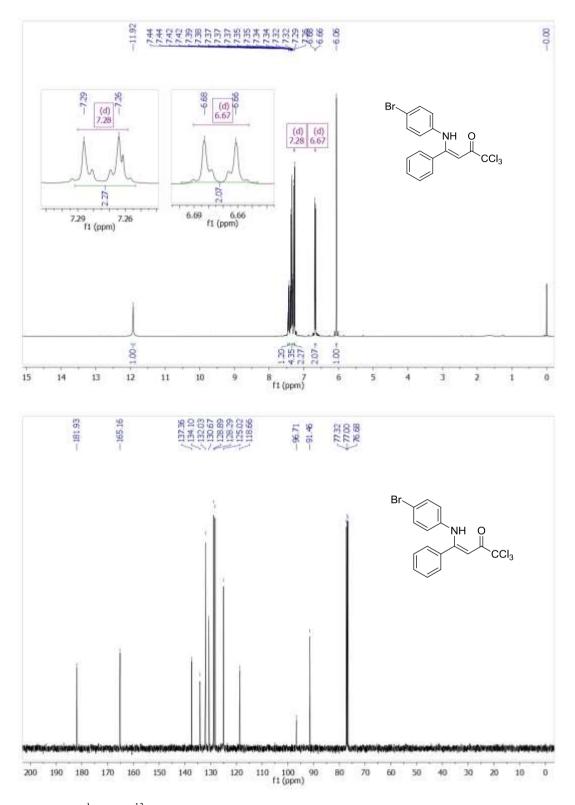


Figure S8. ¹H- and ¹³C-NMR in CDCl₃ at 400 and 101 MHz, respectively of compound 4h.

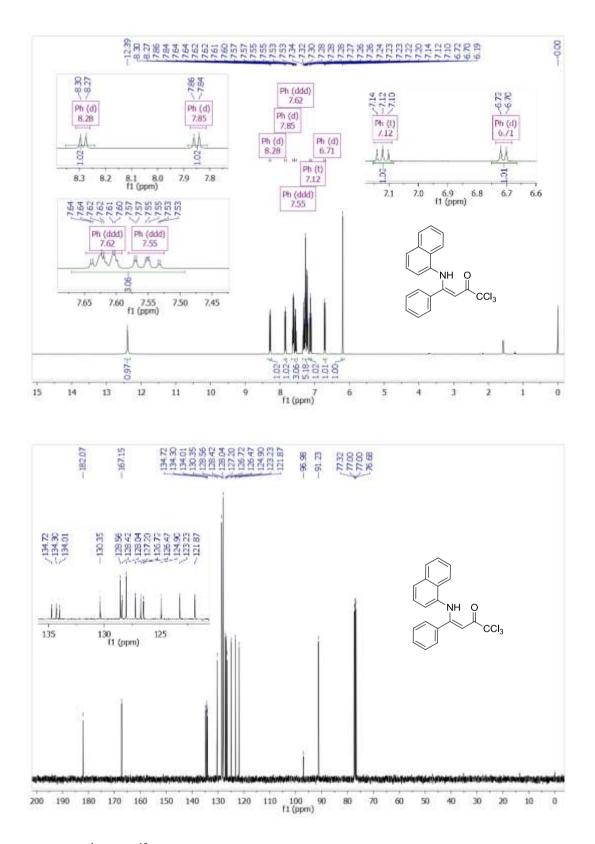


Figure S9. ¹H- and ¹³C-NMR in CDCl₃ at 400 and 101 MHz, respectively of compound 4i.

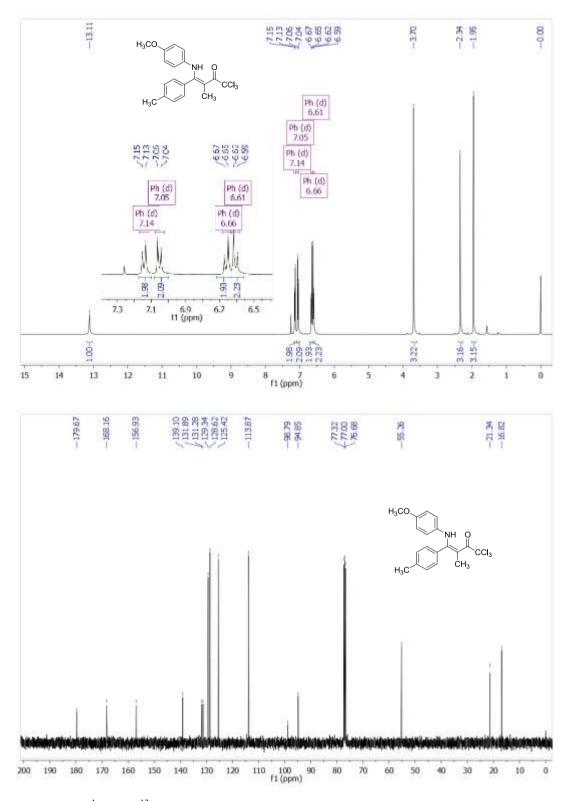


Figure S10. ¹H- and ¹³C-NMR in CDCl₃ at 400 and 101 MHz, respectively of compound 5e.

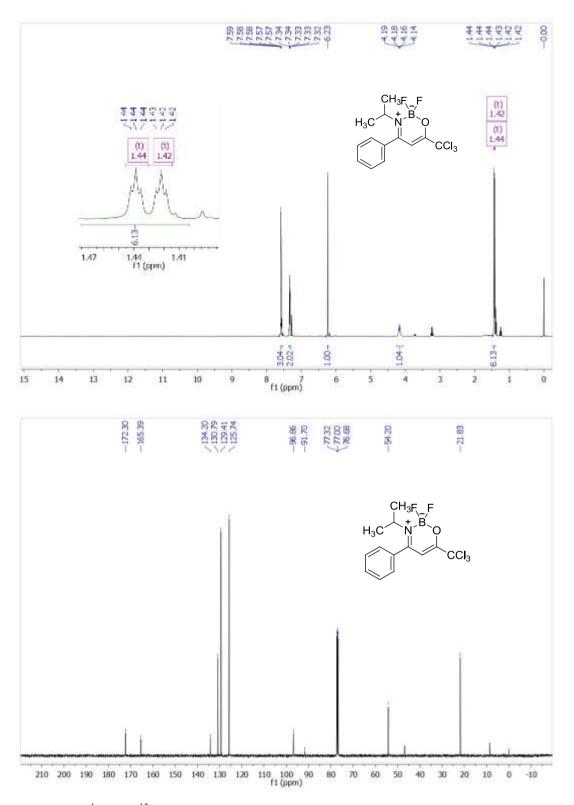


Figure S11. ¹H- and ¹³C-NMR in CDCl₃ at 400 and 101 MHz, respectively of compound 6a.

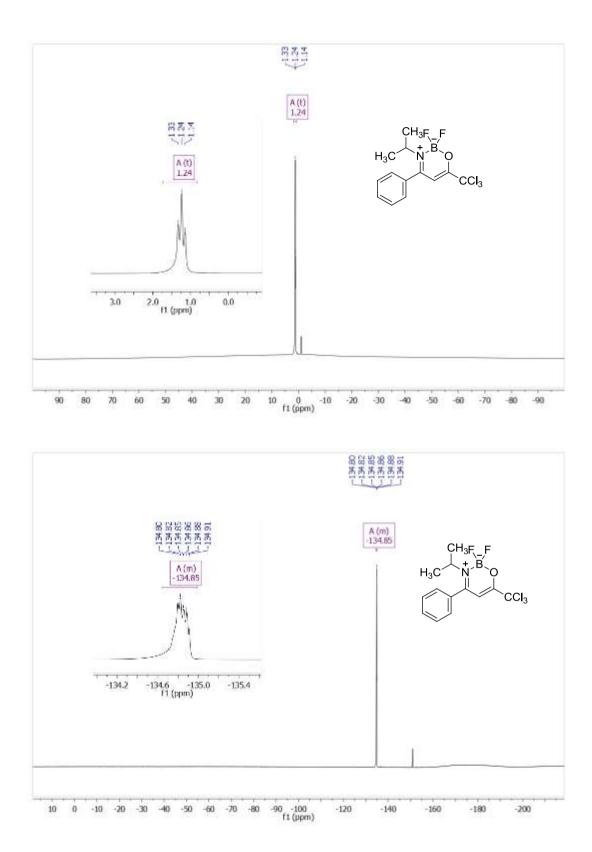


Figure S12. ¹¹B and ¹⁹F-NMR in CDCl₃ at 193 and 565 MHz, respectively of compound 6a.

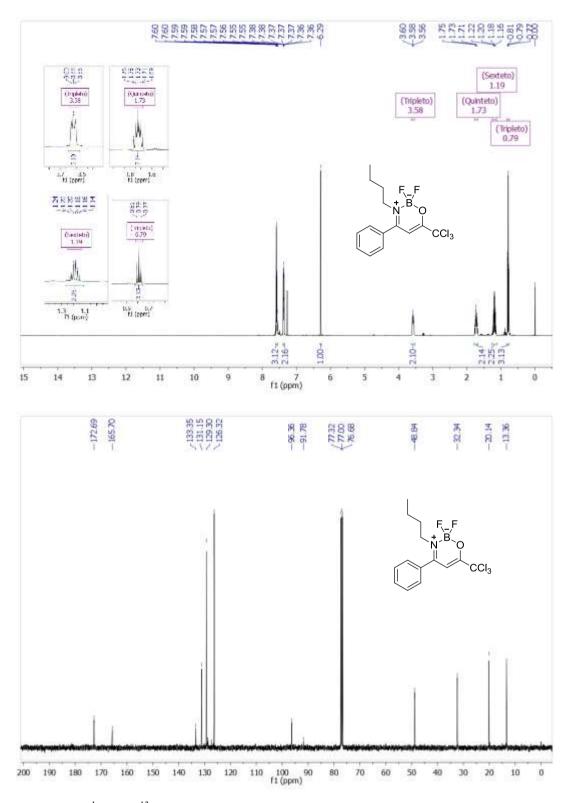


Figure S13. ¹H- and ¹³C-NMR in CDCl₃ at 400 and 101 MHz, respectively of compound 6b.

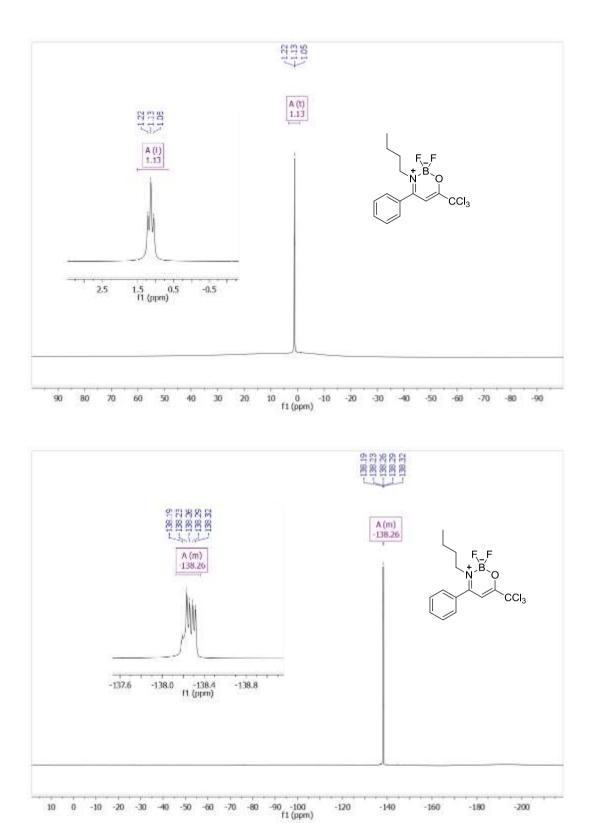


Figure S14. ¹¹B and ¹⁹F-NMR in CDCl₃ at 193 and 565 MHz, respectively of compound 6b.

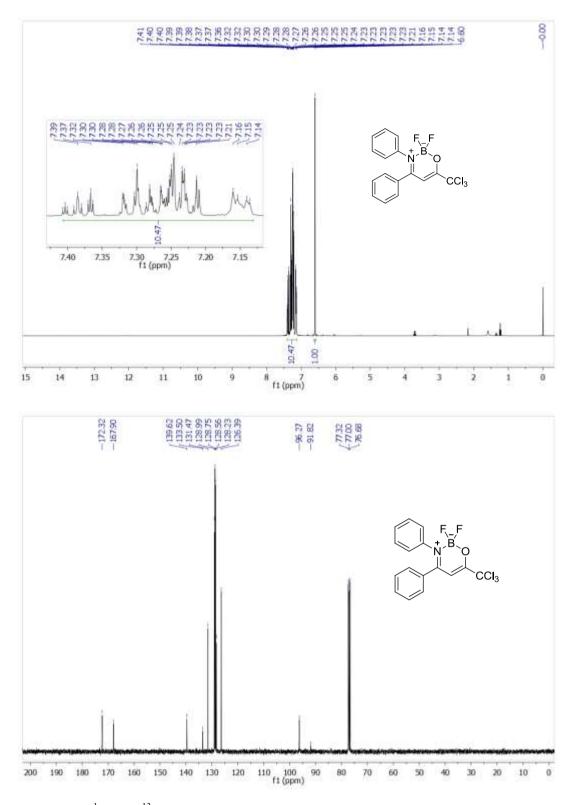
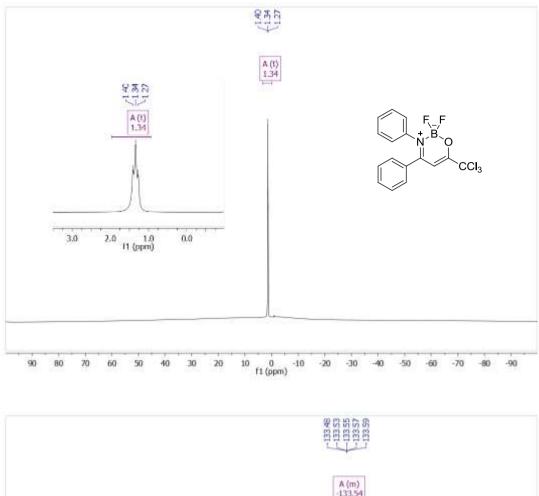
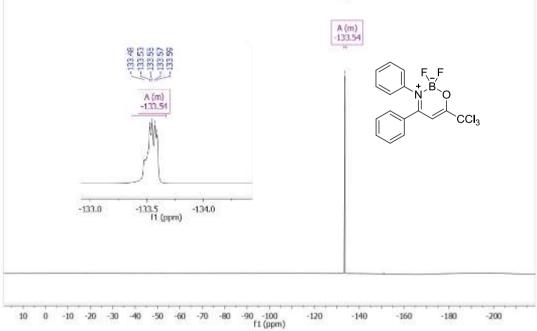




Figure S15. ¹H- and ¹³C-NMR in CDCl₃ at 400 and 101 MHz, respectively of compound 6c.

Figure S16. ¹¹B- and ¹⁹F-NMR in CDCl₃ at 193 and 565 MHz respectively of compound **6c**.

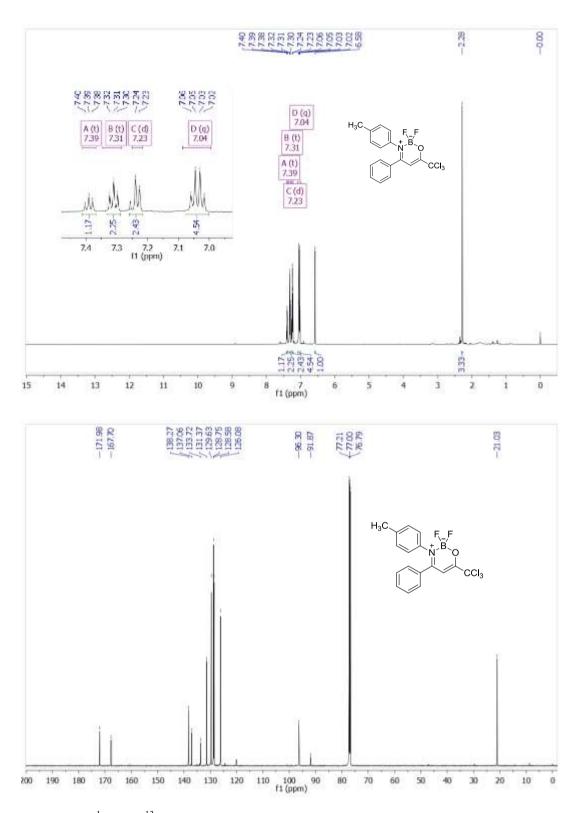


Figure S17. ¹H- and ¹³C-NMR in CDCl₃ at 600 and 151 MHz, respectively of compound 6d.

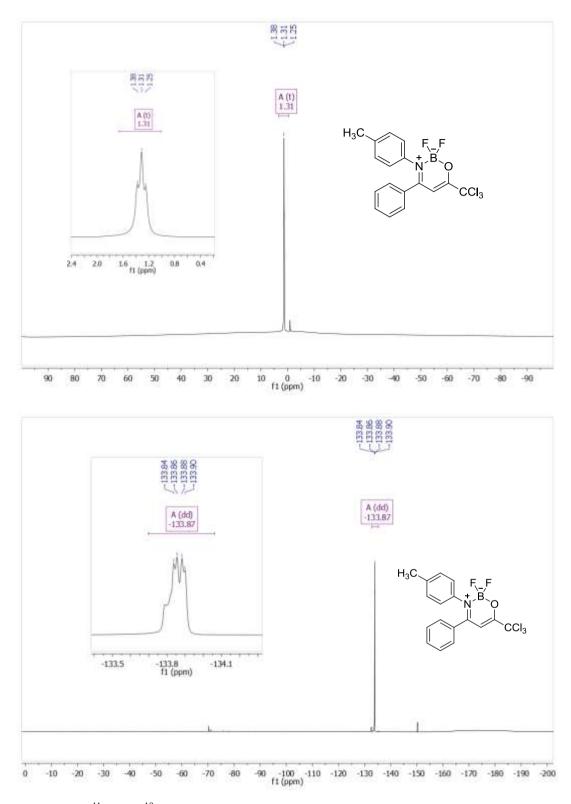


Figure S18. ¹¹B- and ¹⁹F-NMR in CDCl₃ at 193 and 565 MHz, respectively of compound 6d.

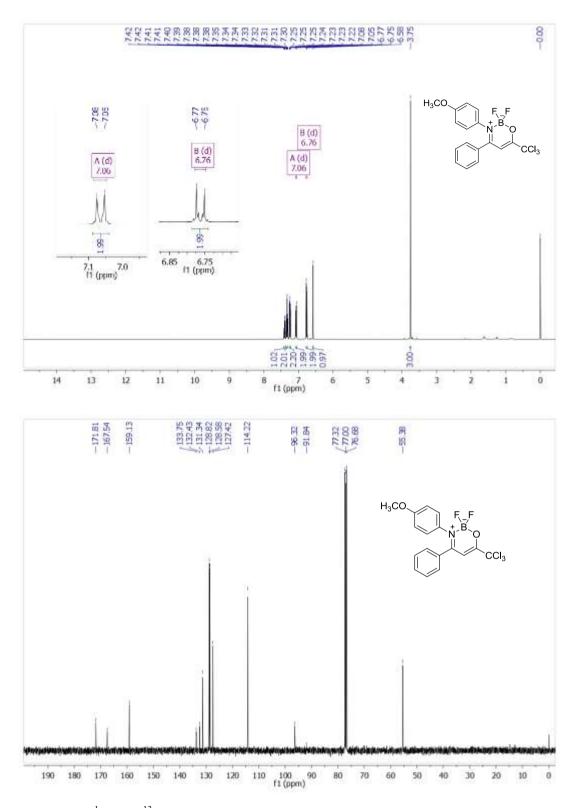
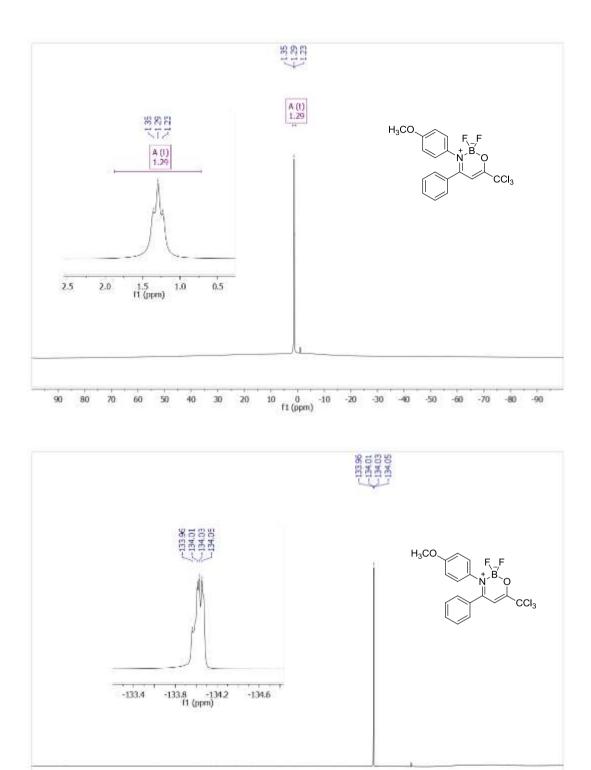



Figure S19. ¹H- and ¹³C-NMR in CDCl₃ at 400 and 101 MHz, respectively of compound 6e.

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 f1 (ppm)

Figure S20. ¹¹B- and ¹⁹F-NMR in CDCl₃ at 193 and 565 MHz, respectively of compound 6e.

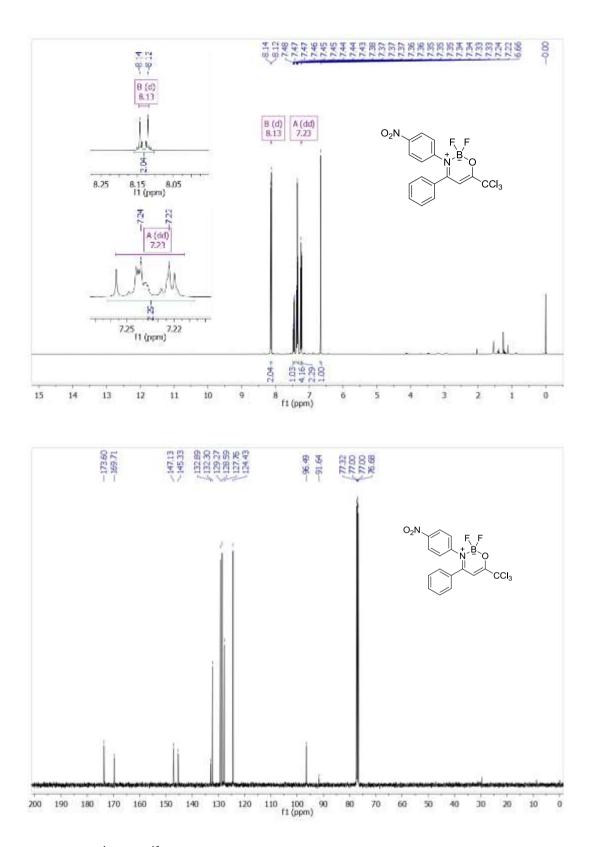


Figure S21. ¹H- and ¹³C-NMR in CDCl₃ at 400 and 101 MHz, respectively of compound 6f.

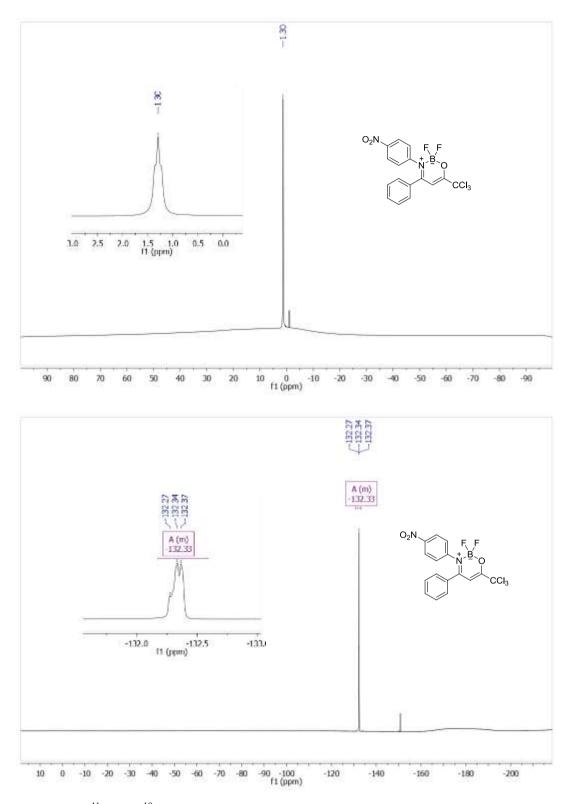


Figure S22. ¹¹B- and ¹⁹F-NMR in CDCl₃ at 193 and 565 MHz, respectively of compound 6f.

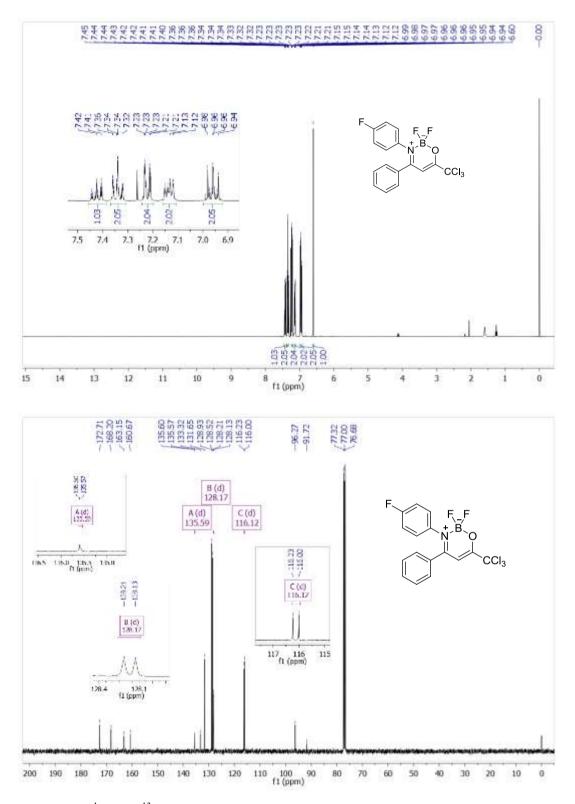


Figure S23. ¹H- and ¹³C-NMR in CDCl₃ at 400 and 101 MHz, respectively of compound 6g.

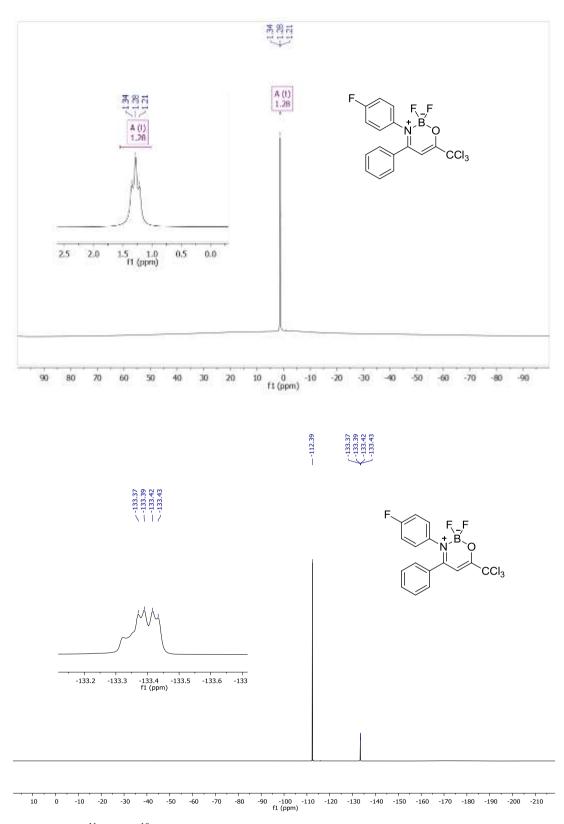


Figure S24. ¹¹B- and ¹⁹F-NMR in CDCl₃ at 193 and 565 MHz, respectively of compound 6g.

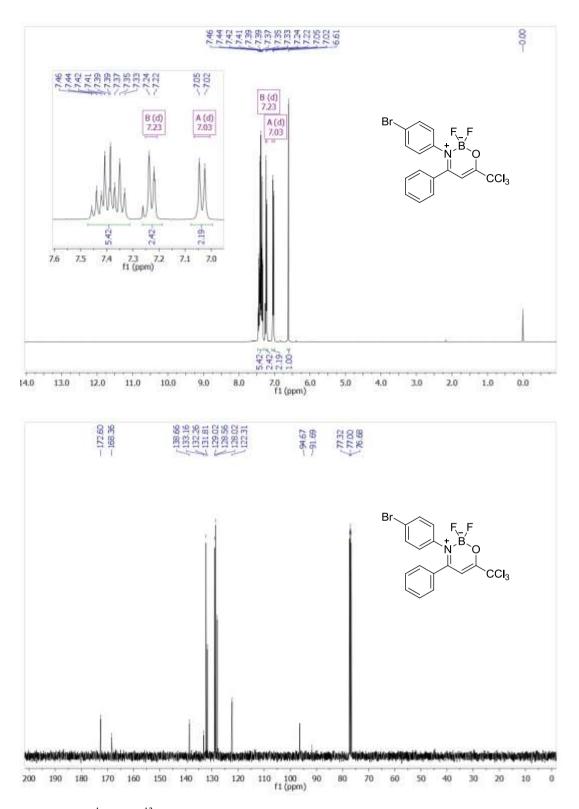


Figure S25. ¹H- and ¹³C-NMR in CDCl₃ at 400 and 101 MHz, respectively of compound 6h.

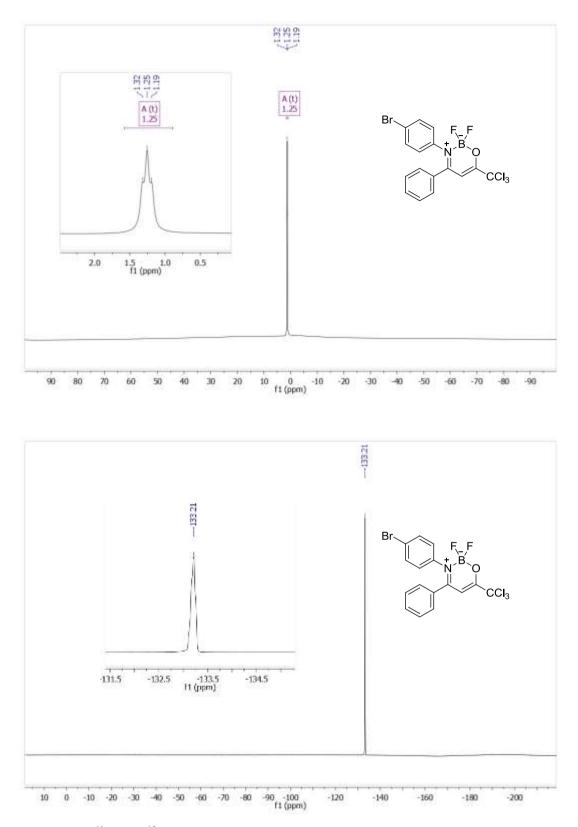


Figure S26. ¹¹B- and ¹⁹F-NMR in CDCl₃ at 193 and 565 MHz, respectively of compound 6h.

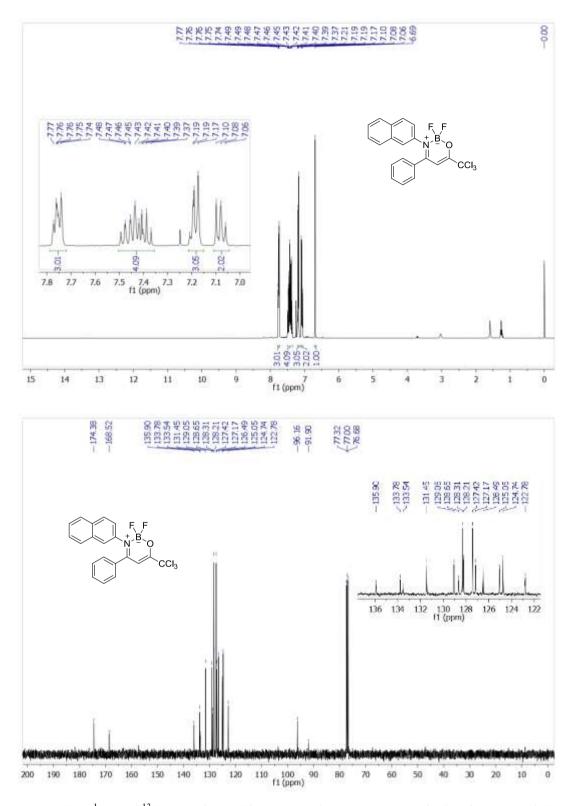


Figure S27. ¹H- and ¹³C-NMR in CDCl₃ at 400 and 101 MHz respectively of compound 6i.

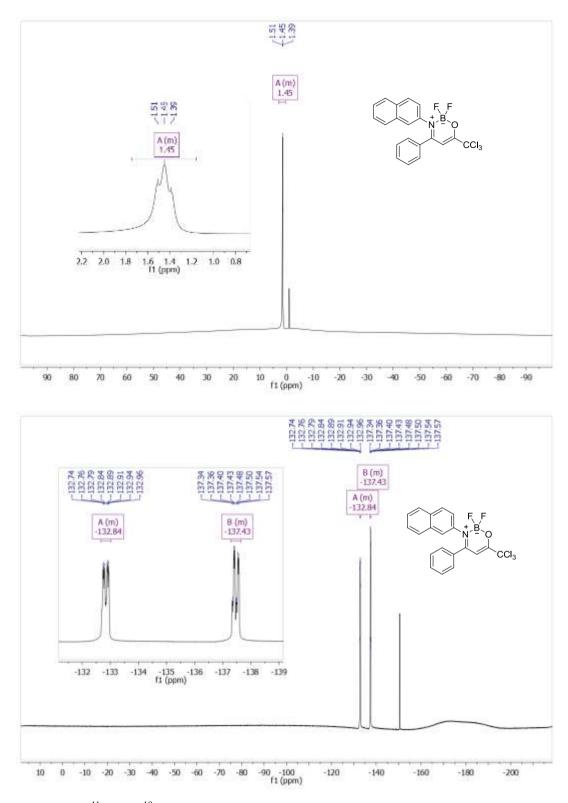


Figure S28. ¹¹B- and ¹⁹F-NMR in CDCl₃ at 193 and 565 MHz respectively of compound 6i.

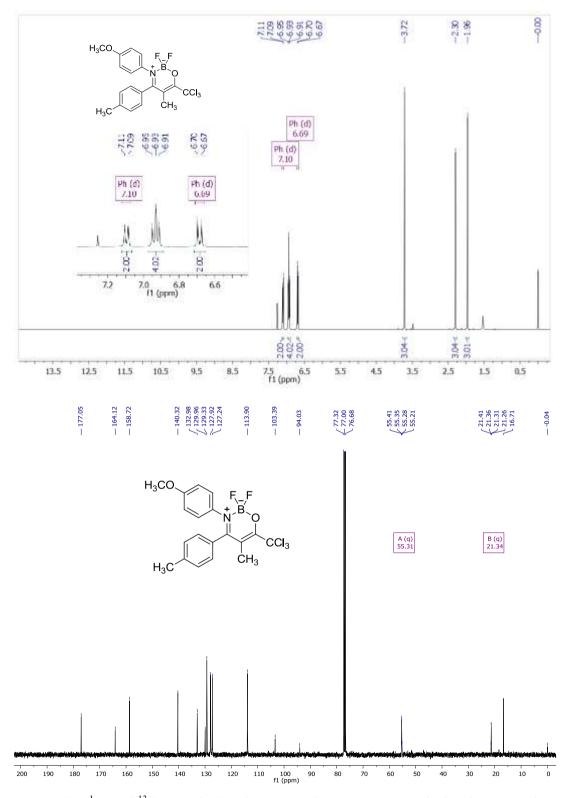


Figure S29. ¹H- and ¹³C-NMR in CDCl₃ at 400 and 101 MHz, respectively of compound 7e.

009104.3.1.11

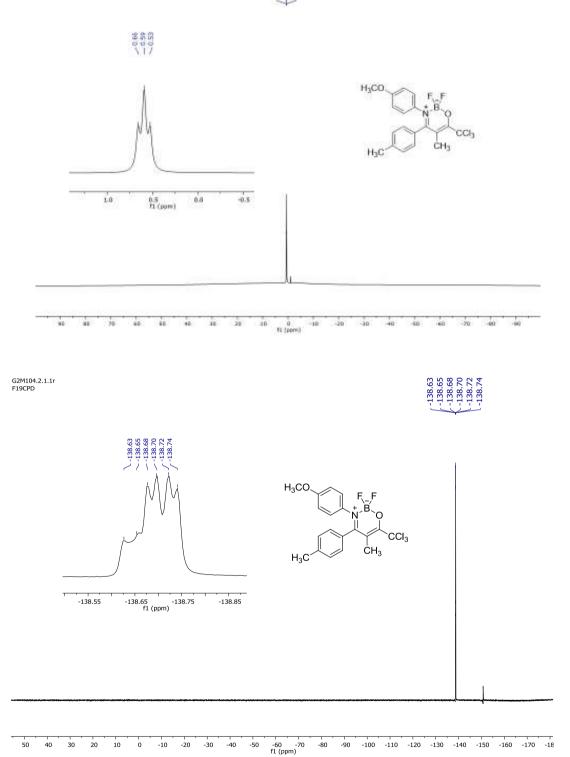


Figure S30. ¹¹B- and ¹⁹F-NMR in CDCl₃ at 193 and 565 MHz, respectively of compound 7e.

2. HMRS spectra of compounds 4c, 4d, 4e and 4g.

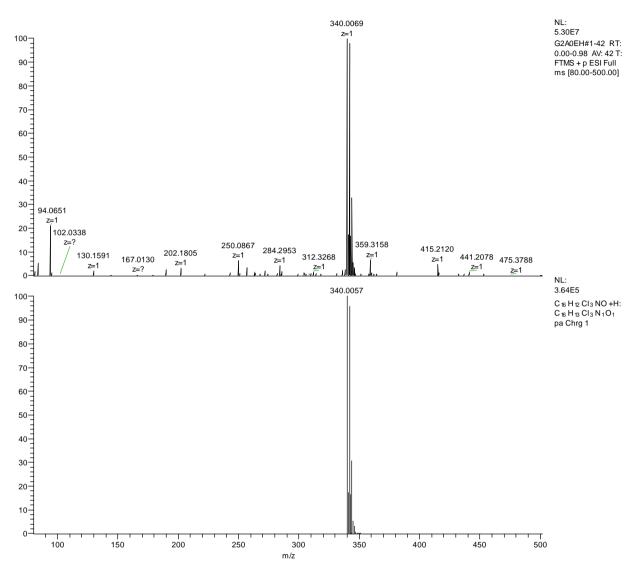


Figure S31. HRMS of compound 4c.

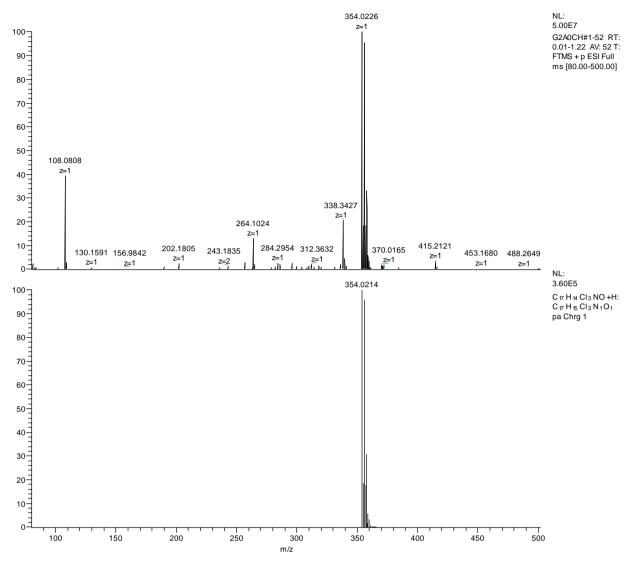


Figure S32. HRMS of compound 4d.

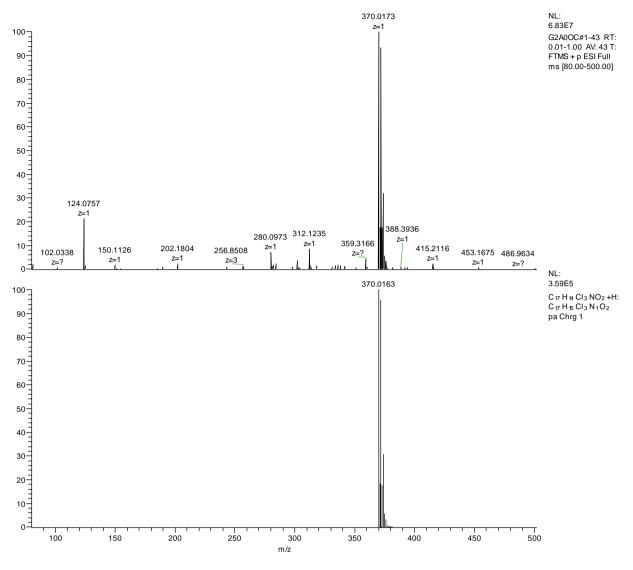


Figure S33. HRMS of compound 4e.

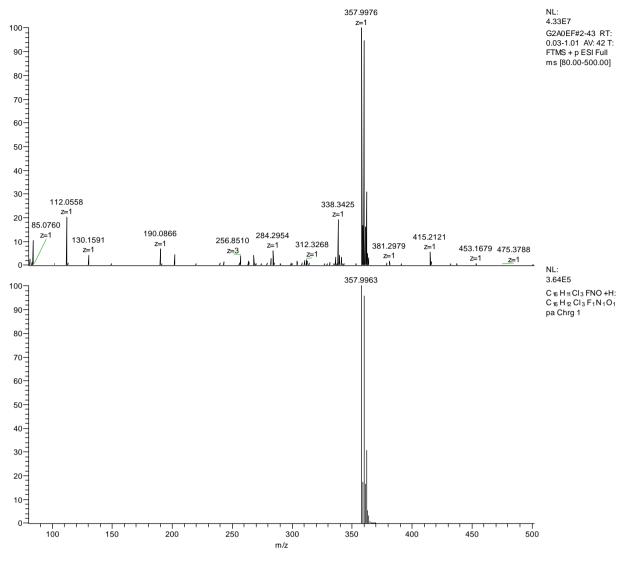


Figure S34. HRMS of compound 4g.

3. Single Crystal X-Ray Data of compounds 4g and 6e.

Single Crystal X-Ray Data of compound 4g.

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found. CIF dictionary

Interpreting this report

Datablock: I

Bond precision	: C-C = 0.0049 A	Wavelength=1.54178
	a=5.9888(8)	b=11.5229(14) c=12.3545(15)
Temperature:		beta=99,803(4) gamma=93,479(4)
	Calculated	Reported
Volume	781.68(17)	781.68(17)
Space group	P -1	P-1
Hall group	-P 1	-P1
Moiety formula	C16 H11 C13 F N C	C16 H11 C13 F N O
Sum formula	C16 H11 C13 F N C	C16 H11 C13 F N O
Mr	358.61	358.61
Dx,g cm=3	1.524	1.524
Z	2	2
Mu (mm-1)	5.409	5,409
F000	364.0	364.0
F000'	367.06	
h,k,lmax	7,13,14	7,13,14
Nref	2887	2712
Tmin, Tmax	0.199,0.399	0.261,0.460
Tmin'	0.127	
Correction met AbsCorr = GAUS		imits: Tmin=0.261 Tmax=0.460
ADSCOIL = GA05	STW	
Data completen	ess= 0.939	Theta(max) = 68.480
R(reflections)	= 0.0600(2487)	wR2(reflections)= 0.1757(2712)
S = 1.095	Npar=	199

The following ALERTS were generated. Each ALERT has the format test-name ALERT alert-type alert-level. Click on the hyperlinks for more details of the test.

-			
Alert level (B. Na manana kata kala manana kata kata kata manana kata kata kata kata kata kata kata		
ABSTYD2 ALERT 1 G	An _exptl_absorpt_correction_type has been given	without	
a lite	rature citation. This should be contained in the		
exptl	absorpt process details field.		
	tion correction given as gaussian		
	The maximum difference density is > 0.1*ZMAX*0.7	5	
	levant atom site should be identified.	\$2	
	The hydrogen treatment should only be one of the	fellowing	
keywor		rorrowing	
* ref			
* ref * ref			
101			
* und			
* con			
* 100			
* mix	ed		
* het	ero		
* het	eroxyz		
 het 	eroU		
* het	eronoref		
 het 	ero-mixed		
* het	eroxyz-mixed		
	eroU-mixed		
• het	eronaref-mixed		
Hydrog	en treatment given as costr		
	diffrn measured fraction theta max Value Low	0.939	101-112
	Ratio of Maximum / Minimum Residual Density		Report
	Large Reported Max. (Positive) Residual Density		eA-3
	Low 'MainMol' Ueg as Compared to Neighbors of		Check
the second s			
PLAT334 ALERT Z C			Ang.
PLAT340 ALERT 3 C	Low Bond Precision on C-C Bonds	0.00487	Ang.
Alert level (1		
	 No Embedded Refinement Details Found in the CIF 	Please	De 1
	Number of Unrefined Donor-H Atoms		
the second se			Report
	_diffrn_measured_fraction_theta_full/*_max < 1.0		Report
PLAT154_ALERT_1_Q	The s.u.'s on the Cell Angles are Equal (Note)	0,004	Degree
0 ALERT level A	= Most likely a serious problem - resolve or exp.	ain	
	= A potentially serious problem, consider carefu		
	- Check. Ensure it is not caused by an omission of		A.F.
	= General information/check it is not something :		
5 ALERT type 1	CIF construction/syntax error, inconsistent or mi:	aling data	
	Indicator that the structure model may be wrong or		
	supressor suge the structure moder may be stond of	- detteren	
	Todiantow that the experience and its may be less		
2 ALERT type 3	Indicator that the structure quality may be low		
2 ALERT type 3 0 ALERT type 4	Indicator that the structure quality may be low Improvement, methodology, query or suggestion Informative message, check		

checkCIF publication errors

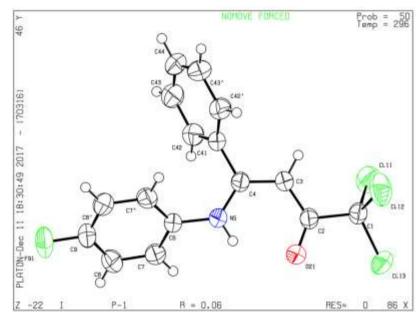
	_publ_requested_journal is missing
e.g. '	Acta Crystallographica Section C'
PUBLOOS ALERT 1 A	publ section title is missing. Title of paper,
PUBL009 ALERT 1 A	publ author name is missing. List of author(s) name(s).
PUBLO10 ALERT 1 N	publ_author_address is missing. Author(s) address(es).
	"Luns" and a "and an an an an an an and a subscript and and the factor
PUBLB12 ALERT 1 A	publ section abstract is missing.
the second se	publ_section_abstract is missing.
the second se	_publ_section_abstract is missing. act of paper in English.
and the second se	

Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. *checkCIF* was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.

Validation response form


Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

```
# start Validation Reply Form
_vrf_POBLOD6_GLOBAL
#
PROBLEM: _publ_requested_journal is missing
RESPONSE: ...
#
vrf_FOBL008_GLOBAL
#
PROBLEM: _publ_section_title is missing. Title of paper.
RESPONSE: ...
#
vrf_FOBL009_GLOBAL
#
PROBLEM: _publ_author_name is missing. List of author(s) name(s).
RESPONSE: ...
#
vrf_FOBL010_GLOBAL
```

```
PROBLEM: _publ_author_address is missing. Author(s) address(es).
RESPONSE: ...
;
vrf_POBL012_GLOBAL
;
PROBLEM: _publ_section_abstract is missing.
RESPONSE: ...
;
# end Validation Reply Form
```

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web. If you wish to submit your CIF for publication in IUCrData you should upload your CIF via the web. If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of 09/11/2017; check.def file version of 08/11/2017

Detaldack E - clipscod plot

Single Crystal X-Ray Data of compound 6e.

checkCIF/PLATON report

You have not supplied any structure factors. As a result the full set of tests cannot be run.

THIS REPORT IS FOR GUIDANCE ONLY. IF USED AS PART OF A REVIEW PROCEDURE FOR PUBLICATION, IT SHOULD NOT REPLACE THE EXPERTISE OF AN EXPERIENCED CRYSTALLOGRAPHIC REFEREE.

No syntax errors found.	CIF dictionary	Interpreting this report
reo symmetricito nouna.	Post arecroning it	timer n etting and repairs

Datablock: I

Bond precision:	C-C = 0,0033 A	3	Wavelength=1,54178
Cell:	a=5.7998(2)	b=16.075	전사장 비행
Temperature:	alpha=90 293 K	beta=90	gamma=90
	Calculated		Reported
Volume	1844.56(9)		1844.56(9)
Space group	P 21 21 21		P212121
Hall group	P 2ac 2ab		P2ac2ab
Moiety formula	C17 H13 B C13 F2	N 02	P2ac2ab C17 H13 B C13 F2 N O2
			C17 H13 B C13 F2 N O2
Mr	418.44		418.44
Dx,g cm-3	1.507		1.507
Z	4		4
Mu (mm-1)	4,787		4.787
F000	848.0		848.0
F000'	854.70		
h,k,lmax	6,19,23		6,19,23
Nref	3359[1964]		3232
Tmin, Tmax	0.352,0.614		0.558,0.753
Tmin'	0.040		
Correction meth	od- # Reported T	Limits: Tr	min=0.558 Tmax=0.753
AbsCorr = GAUSS	IAN		
Data completene	ss= 1.65/0.96	Theta (m	ax)= 68.080
R(reflections)=	0.0290(3154)	wR2(ref	lections)= 0.0784(3232
s = 1.054	Npar=	235	

The following ALERTS were generated. Each ALERT has the format test-name ALERT alert-type alert-level. Click on the hyperlinks for more details of the test.

NO.00.	YOZ ALERT [] An _exptl_absorpt_correction_type has been given a literature citation. This should be contained in the _exptl_absorpt_process_details field. Absorption correction given as gaussian	without	
PLAT	029 ALERT 1 C diffrm measured_fraction_theta_full value Low . 241 ALERT 2 C High 'MainMol' Used as Compared to Neighbors of 242 ALERT 2 C Low 'MainMol' Used as Compared to Neighbors of		Note Check Check
PLAT PLAT PLAT PLAT	Alert level G <u>305 ALERT 5 3</u> No Embedded Refinement Details found in the CIF <u>333 ALERT 4 0</u> Flack x Value Deviates > 3.0 * sigma from Zero . <u>363 ALERT 4 0</u> Crystal Size Likely too Large for Beam Size <u>199 ALERT 1 0</u> Reported _cell measurement_temperature (K) <u>200 ALERT 1 0</u> Reported _ diffrn ambient temperature (K)		Note
	395 ALERT 2 G Deviating X-O-Y Angle from 120 Deg for OI	123,3	Degree
0 4		lain lly or oversig	ht

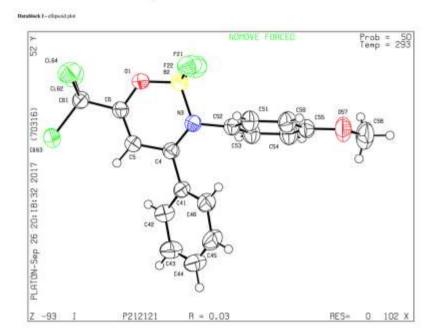
checkCIF publication errors

UBLODE ALERT 1 A	
	'Acta Crystallographica Section C'
UBLOOH ALERT 1 A	_publ_section_title is missing. Title of paper.
TUBLOOS ALERT 1 A	이 모든 것이라는 그 것이라면 가 모든 것이라. 것이라는 것이라. 이 것이라 가지 않는 것이라는 것이 있다. 것이 것이라는 것이 같은 것이 같은 것이라. 안전 것이 같은 것이라. 이 것이 같은 것이라.
PUBLO10 ALERT 1 A	_publ_author_address is missing. Author(s) address(es).
SUBLO12 ALERT I A	_publ_section_abstract is missing.
Abstra	act of paper in English.
Abstra	ect of paper in English.
	set or paper in English.

Publication of your CIF

You should attempt to resolve as many as possible of the alerts in all categories. Often the minor alerts point to easily fixed oversights, errors and omissions in your CIF or refinement strategy, so attention to these fine details can be worthwhile. In order to resolve some of the more serious problems it may be necessary to carry out additional measurements or structure refinements. However, the nature of your study may justify the reported deviations from journal submission requirements and the more serious of these should be commented upon in the discussion or experimental section of a paper or in the "special_details" fields of the CIF. *checkCIF* was carefully designed to identify outliers and unusual parameters, but every test has its limitations and alerts that are not important in a particular case may appear. Conversely, the absence of alerts does not guarantee there are no aspects of the results needing attention. It is up to the individual to critically assess their own results and, if necessary, seek expert advice.

If level A alerts remain, which you believe to be justified deviations, and you intend to submit this CIF for publication in a journal, you should additionally insert an explanation in your CIF using the Validation Reply Form (VRF) below. This will allow your explanation to be considered as part of the review process.


Validation response form

Please find below a validation response form (VRF) that can be filled in and pasted into your CIF.

start Validation Reply Form
_vrf_PUBL006_GLOBAL
;
PROBLEM: _publ_requested_journal is midsing
RESPONSE: ...;
;
vrf_PUBL008_GLOBAL;
;
PROBLEM: _publ_section_title is missing. Title of paper.
RESPONSE: ...;
;
vrf_PUBL009_GLOBAL;
;
PROBLEM: _publ_author_name is missing. List of author(s) name(s).
RESPONSE: ...;
;
vrf_PUBL010_GLOBAL;
;
PROBLEM: _publ_author_address is missing. Author(s) address(es).
RESPONSE: ...;
;
rvf_PUBL012_GLOBAL;
;
PROBLEM: _publ_section_abstract is missing.
RESPONSE: ...;
;
;
end Validation Reply Form

If you wish to submit your CIF for publication in Acta Crystallographica Section C or E, you should upload your CIF via the web. If you wish to submit your CIF for publication in IUCrData you should upload your CIF via the web. If your CIF is to form part of a submission to another IUCr journal, you will be asked, either during electronic submission or by the Co-editor handling your paper, to upload your CIF via our web site.

PLATON version of 13/08/2017; check.def file version of 27/07/2017

S44

4. UV-VIS Spectra for compounds 6a-i and 7e.

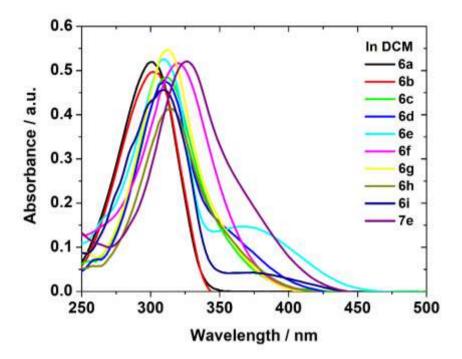


Figure S35. UV-Vis absorption spectra in DCM solution of boron complexes 6a-i and 7e.

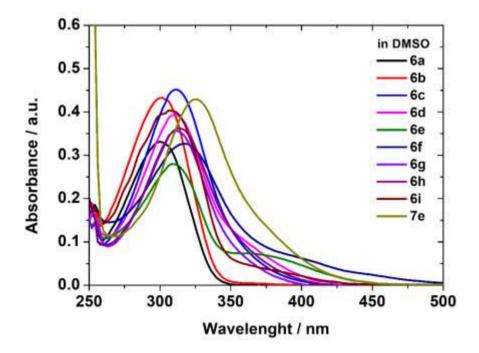


Figure S36. UV-Vis absorption spectra in DMSO solution of boron complexes 6a-i and 7e.

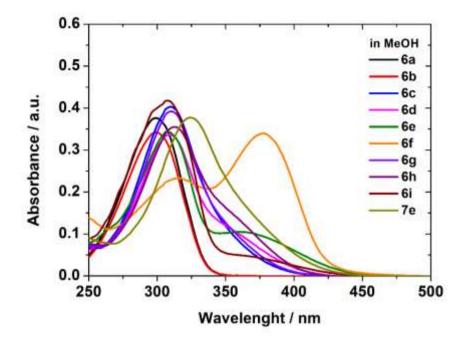


Figure S37. UV-Vis absorption spectra in MeOH solution of boron complexes 6a-i and 7e.

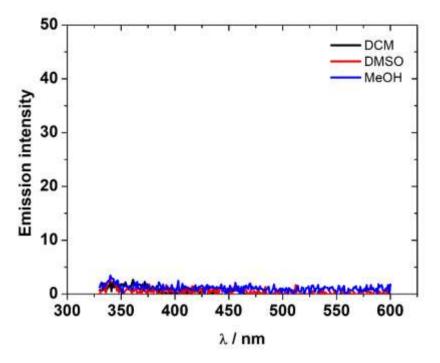
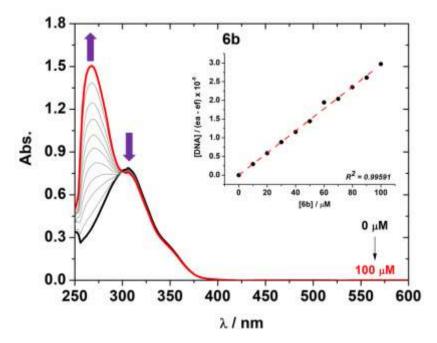
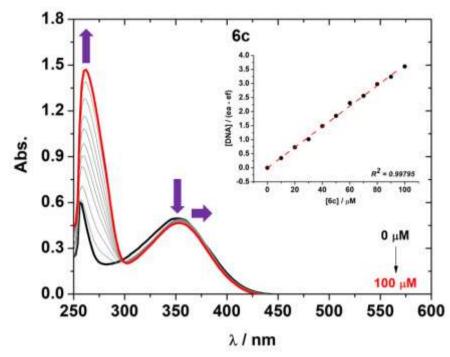
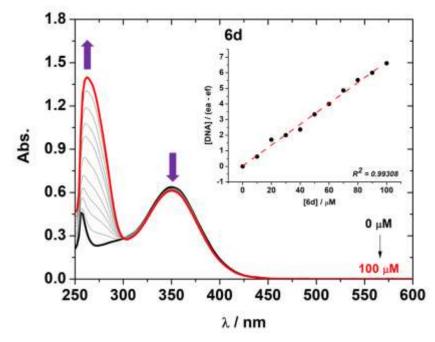
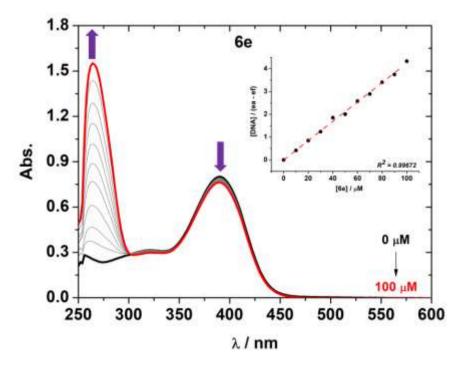
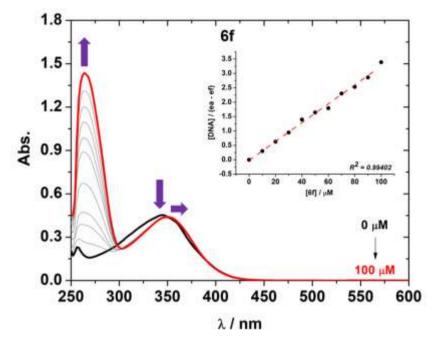
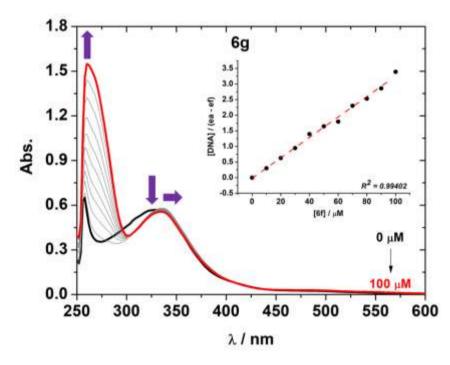




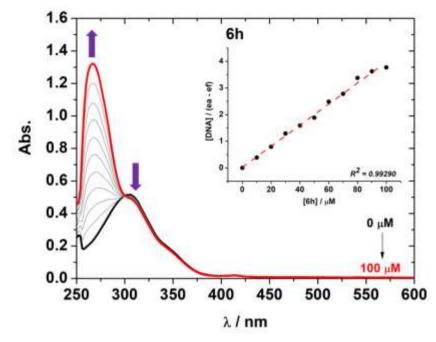
Figure S38. Comparative steady-state emission fluorescence spectra in solution of boron complex 6a.

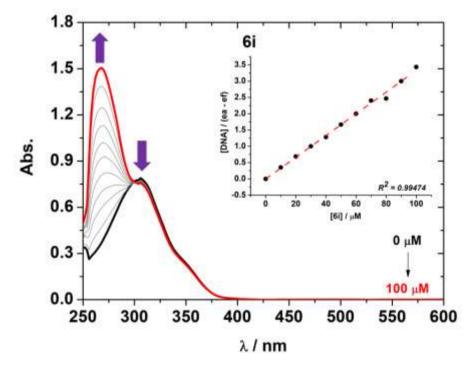

6. UV-VIS DNA titrations spectra.

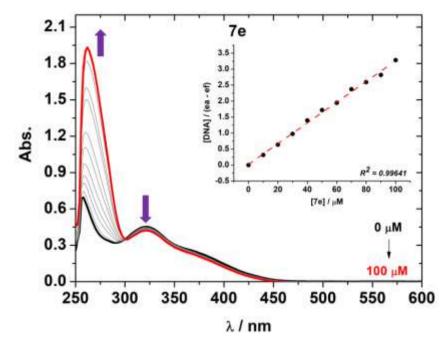

Figure S39. UV–Vis absorption spectra for compound **6b** and the effect of successive additions of CT-DNA solution in the presence of a fixed concentration of **6b**, in a DMSO(2%)/Tris-HCl buffer mixture (pH = 7.2). Insert graph shows the plot [DNA]/($\varepsilon_a - \varepsilon_f$) *versus* [DNA]. The concentration of CT-DNA ranged from 0 to 100 μ M.


Figure S40. UV–Vis absorption spectra for compound **6c** and the effect of successive additions of CT-DNA solution in the presence of a fixed concentration of **6c**, in a DMSO(2%)/Tris-HCl buffer mixture (pH = 7.2). Insert graph shows the plot [DNA]/($\varepsilon_a - \varepsilon_f$) *versus* [DNA]. The concentration of CT-DNA ranged from 0 to 100 μ M.


Figure S41. UV–Vis absorption spectra for compound **6d** and the effect of successive additions of CT-DNA solution in the presence of a fixed concentration of **6d**, in a DMSO(2%)/Tris-HCl buffer mixture (pH = 7.2). Insert graph shows the plot [DNA]/($\varepsilon_a - \varepsilon_f$) *versus* [DNA]. The concentration of CT-DNA ranged from 0 to 100 μ M.


Figure S42. UV–Vis absorption spectra for compound **6e** and the effect of successive additions of CT-DNA solution in the presence of a fixed concentration of **6e**, in a DMSO(2%)/Tris-HCl buffer mixture (pH = 7.2). Insert graph shows the plot [DNA]/($\varepsilon_a - \varepsilon_f$) *versus* [DNA]. The concentration of CT-DNA ranged from 0 to 100 μ M.


Figure S43. UV–Vis absorption spectra for compound **6f** and the effect of successive additions of CT-DNA solution in the presence of a fixed concentration of **6f**, in a DMSO(2%)/Tris-HCl buffer mixture (pH = 7.2). Insert graph shows the plot [DNA]/($\varepsilon_a - \varepsilon_f$) *versus* [DNA]. The concentration of CT-DNA ranged from 0 to 100 μ M.


Figure S44. UV–Vis absorption spectra for compound **6g** and the effect of successive additions of CT-DNA solution in the presence of a fixed concentration of **6g**, in a DMSO(2%)/Tris-HCl buffer mixture (pH = 7.2). Insert graph shows the plot [DNA]/($\varepsilon_a - \varepsilon_f$) *versus* [DNA]. The concentration of CT-DNA ranged from 0 to 100 μ M.

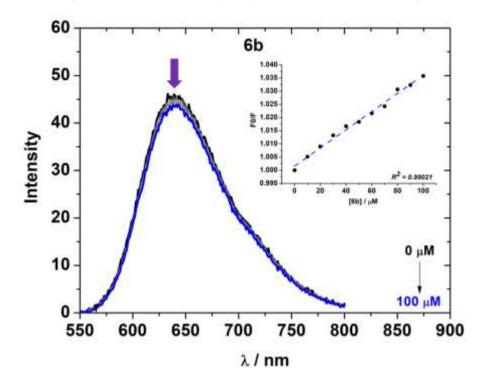

Figure S45. UV–Vis absorption spectra for compound **6h** and the effect of successive additions of CT-DNA solution in the presence of a fixed concentration of **6h**, in a DMSO(2%)/Tris-HCl buffer mixture (pH = 7.2). Insert graph shows the plot [DNA]/($\varepsilon_a - \varepsilon_f$) *versus* [DNA]. The concentration of CT-DNA ranged from 0 to 100 μ M.

Figure S46. UV–Vis absorption spectra for compound **6i** and the effect of successive additions of CT-DNA solution in the presence of a fixed concentration of **6i**, in a DMSO(2%)/Tris-HCl buffer mixture (pH = 7.2). Insert graph shows the plot [DNA]/($\varepsilon_a - \varepsilon_f$) *versus* [DNA]. The concentration of CT-DNA ranged from 0 to 100 μ M.

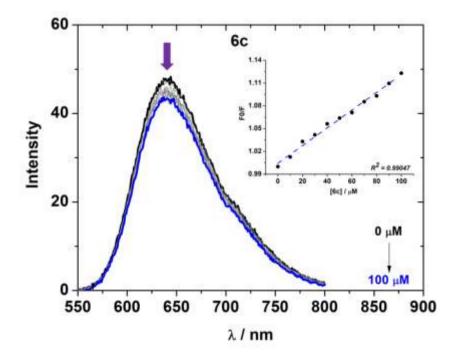
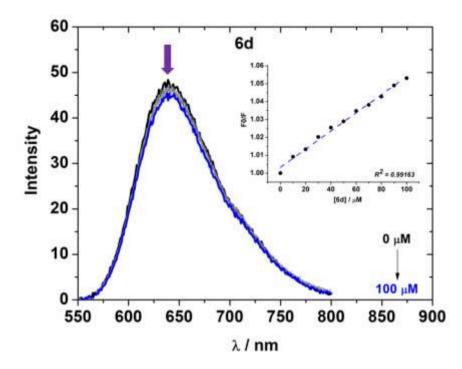


Figure S47. UV–Vis absorption spectra for compound **7e** and the effect of successive additions of CT-DNA solution in the presence of a fixed concentration of **7e**, in a DMSO(2%)/Tris-HCl buffer mixture (pH = 7.2). Insert graph shows the plot [DNA]/($\varepsilon_a - \varepsilon_f$) *versus* [DNA]. The concentration of CT-DNA ranged from 0 to 100 μ M.



7. Competitive EB-DNA assays by emission fluorescence spectra

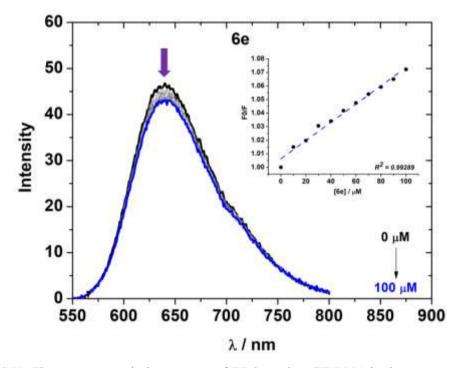
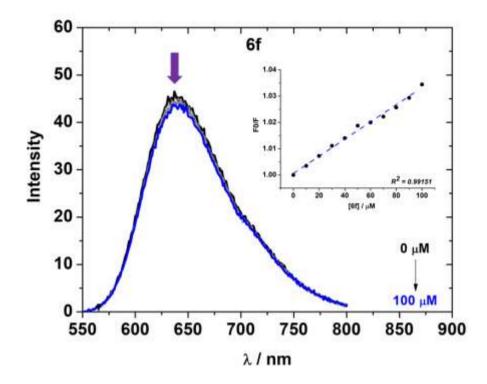
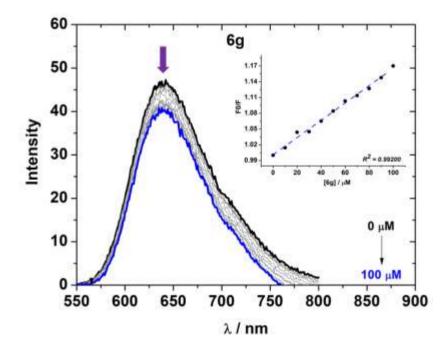
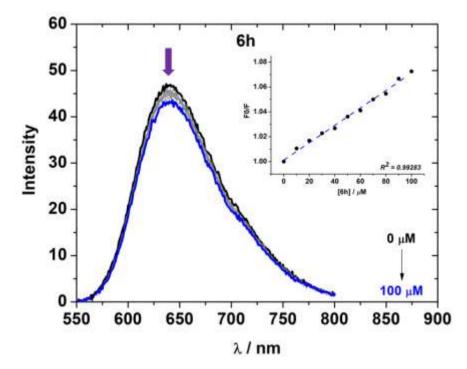
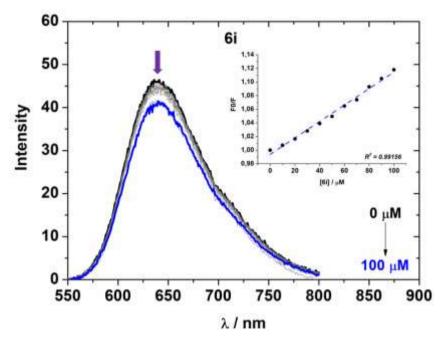

Figure S48. Fluorescence emission spectra of EB bound to CT-DNA in the presence of **6b** in a DMSO(2%)/Tris-HCl pH 7.2 mixture at λ_{exc} =510 nm. The inset shows the plot of F₀/F *versus* the concentration of compound **6b** according to the Stern-Volmer equation.

Figure S49. Fluorescence emission spectra of EB bound to CT-DNA in the presence of **6c** in a DMSO(2%)/Tris-HCl pH 7.2 mixture at λ_{exc} =510 nm. The inset shows the plot of F₀/F *versus* the concentration of compound **6c** according to the Stern-Volmer equation.

Figure S50. Fluorescence emission spectra of EB bound to CT-DNA in the presence of **6d** in a DMSO(2%)/Tris-HCl pH 7.2 mixture at λ_{exc} =510 nm. The inset shows the plot of F₀/F *versus* the concentration of compound **6d** according to the Stern-Volmer equation.

Figure S51. Fluorescence emission spectra of EB bound to CT-DNA in the presence of **6e** in a DMSO(2%)/Tris-HCl pH 7.2 mixture at λ_{exc} =510 nm. The inset shows the plot of F₀/F *versus* the concentration of compound **6e** according to the Stern-Volmer equation.


Figure S52. Fluorescence emission spectra of EB bound to CT-DNA in the presence of 6f in a DMSO(2%)/Tris-HCl pH 7.2 mixture at λ_{exc} =510 nm. The inset shows the plot of F₀/F *versus* the concentration of compound 6f according to the Stern-Volmer equation.

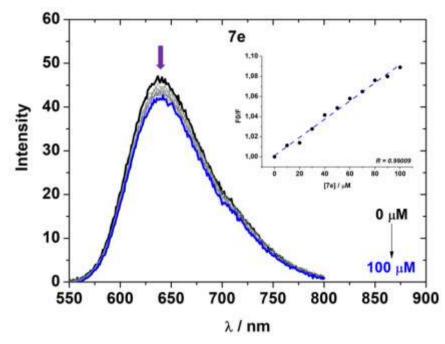
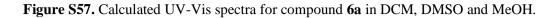

Figure S53. Fluorescence emission spectra of EB bound to CT-DNA in the presence of **6g** in a DMSO(2%)/Tris-HCl pH 7.2 mixture at λ_{exc} =510 nm. The inset shows the plot of F₀/F *versus* the concentration of compound **6g** according to the Stern-Volmer equation.

Figure S54. Fluorescence emission spectra of EB bound to CT-DNA in the presence of **6h** in a DMSO(2%)/Tris-HCl pH 7.2 mixture at λ_{exc} =510 nm. The inset shows the plot of F₀/F *versus* the concentration of compound **6h** according to the Stern-Volmer equation.

Figure S55. Fluorescence emission spectra of EB bound to CT-DNA in the presence of **6i** in a DMSO(2%)/Tris-HCl pH 7.2 mixture at λ_{exc} =510 nm. The inset shows the plot of F₀/F *versus* the concentration of compound **6i** according to the Stern-Volmer equation.


Figure S56. Fluorescence emission spectra of EB bound to CT-DNA in the presence of **7e** in a DMSO (2%)/Tris-HCl pH 7.2 mixture at λ_{exc} =510 nm. The inset shows the plot of F₀/F *versus* the concentration of compound **7e** according to the Stern-Volmer equation.

8. **TD-DFT Calculations**

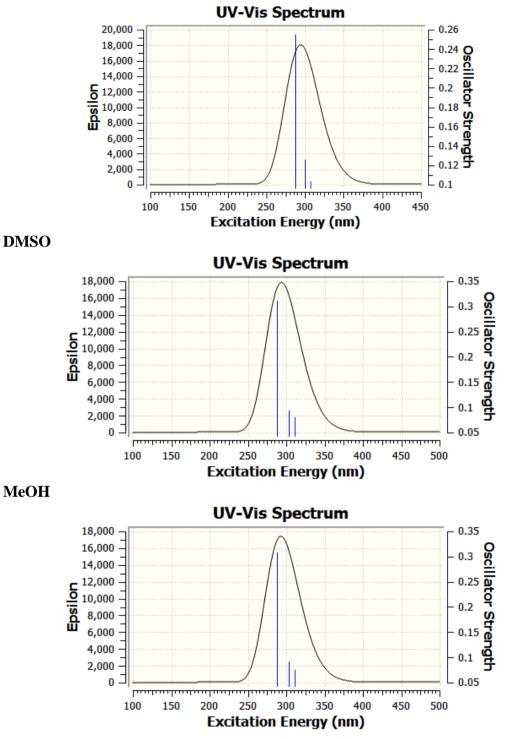

All calculations were done using the Gaussian 09 package of program. All geometrical structures were optimized at the SCRF(PCM)-B3LYP/cc-pVTZ level of theory, with single point energies and molecular orbitals calculated at the same level of theory. The PCM model was used to account for the solvent effect. Harmonic frequency calculations were done in order to confirm that the geometries were at the minimum potential energy

Table S3. Excitation energy (E), wavelength of maximum absorbance (λ_{max}), and oscillator strengths (*f*) for HOMO-LUMO orbitals in CH₂Cl₂, DMSO and MeOH for compound **6a**. Calculated at the TD-DFT (SCRF(PCM))-B3LYP/cc-pVTZ level.

Solvente	Eletronic	Energy	λmax	Main O	rbital Transition	F
	Transitions	(eV)	(nm)			
	$S_0 \rightarrow S_1$			88->91	0.19059	
		4.0338	307.36	89->91	0.59301	0.1034
				90->91	0.32649	
CH_2Cl_2	$S_0 \rightarrow S_2$			88->91	0.35302	
		4.1314	300.10	89->91	-0.37669	0.1260
				90->91	0.48004	
	$S_0 \rightarrow S_3$	4.3134	287.44	88->91	0.57808	0.2549
		4.3134	207.44	90->91	-0.39955	0.2349
	$S_0 \rightarrow S_1$			88->91	0.18891	
		3.9833	311.26	89->91	0.60689	0.0806
				90->91	0.30081	
DMSO	$S_0 \rightarrow S_2$			88->91	0.38352	
		4.0828	303.67	89->91	-0.35386	0.0942
				90->91	0.47411	
	$S_0 \rightarrow S_3$	4.3023	288.18	88->91	0.55882	0.3121
		4.3023	200.10	90 ->91	-0.42599	0.3121
	$S_0 \rightarrow S_1$			88->91	0.18796	
		3.9906	310.69	89->91	0.61152	0.0754
				90->91	0.29179	
MeOH	$S_0 \rightarrow S_2$			88->91	0.39485	
		4.0906	303.10	89->91	-0.34559	0.0914
				90->91	0.47087	
	$S_0 \rightarrow S_3$	4.3110	287.60	88->91	0.55117	0.3078
		4.5110	207.00	90->91	0.43574	0.3078

CH₂Cl₂

S60

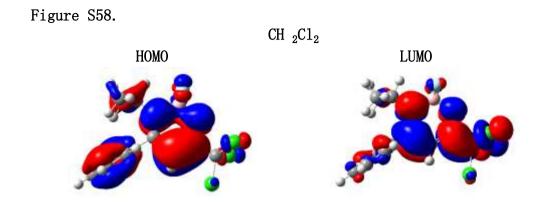
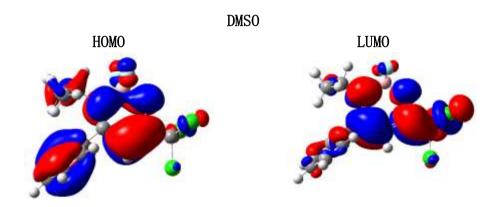
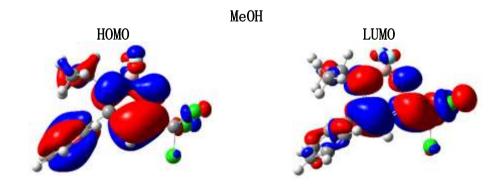
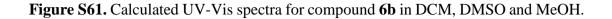
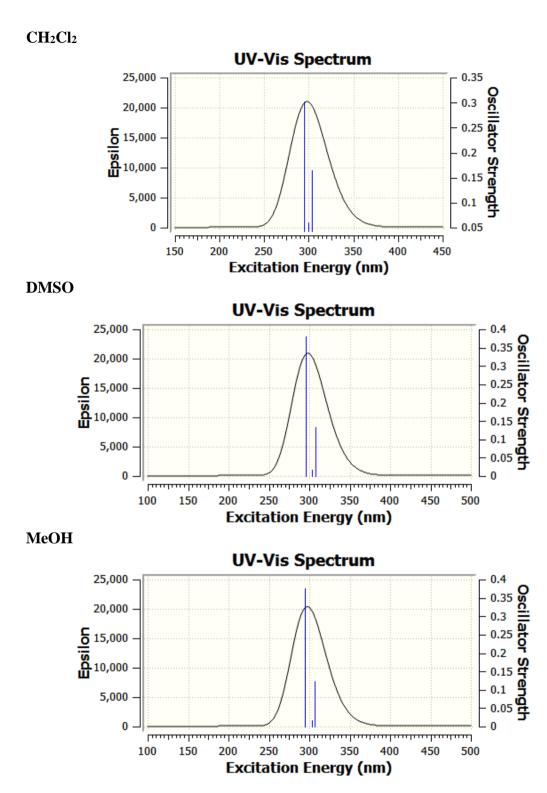
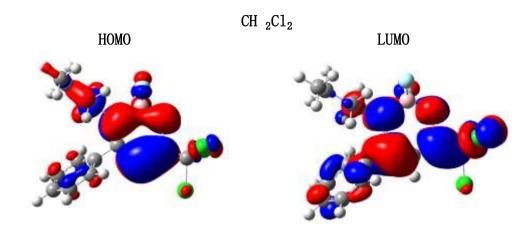


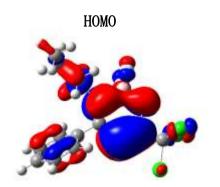
Figure S59.


Figure S60.


Table S4. Excitation energy (E), wavelength of maximum absorbance (λ_{max}), and oscillator strengths (*f*) for HOMO-LUMO orbitals in CH₂Cl₂, DMSO and MeOH for compound **6b**. Calculated at the TD-DFT (SCRF(PCM))-B3LYP/cc-pVTZ level.

Solvente	Eletronic Transitions	Energy (eV)	λmax (nm)	Main Ort	oital Transitio	n	F
	$S_0 \rightarrow S_1$	4.0823	303.71	92 -> 95 93 -> 95 94 -> 95	-0.12387 0.66122 -0.20431		0.1641
CHCl ₂	$S_0 \rightarrow S_2$	4.1422	299.32	92 0. 60112 94 → 95 0. 36527	->	95	0.0607
	$S_0 \rightarrow S_3$	4.2024	295.03	92 -> 95 93 -> 95 94 -> 95	0.34355 0.23748 0.56656		0.3021
	$S_0 \rightarrow S_1$	4.0318	307.51	92 -> 95 93 -> 95 94 -> 95	-0.16215 0.66880 -0.14379		0.1332
DMSO	$S_0 \rightarrow S_2$	4.0857	303.46	92 -> 95 93 -> 95 94 -> 95	0.64716 0.10211 -0.25634		0.0175
	$S_0 \rightarrow S_3$	4.1981	295.34	92 -> 95 93 -> 95 94 -> 95	0.22337 0.19010 0.64012		0.3808
	$S_0 \rightarrow S_1$	4.0404	306.86	92 -> 95 93 -> 95 94 -> 95	-0.15707 0.67160 -0.13561		0.1246
МеОН	$S_0 \rightarrow S_2$	4.0930	302.92	92 -> 95 93 -> 95 94 -> 95	0.64880 0.10109 -0.25242		0.0169
	$S_0 \rightarrow S_3$	4.2072	294.69	92 -> 95 93 -> 95 94 -> 95	0.22208 0.18016 0.64343		0.3763

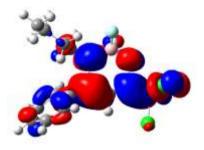
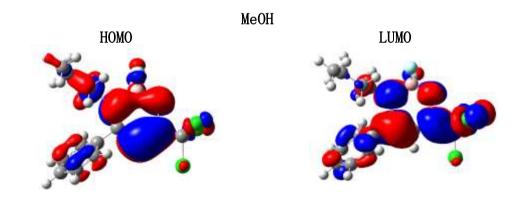


S63

DMSO

Figure S63.

LUMO

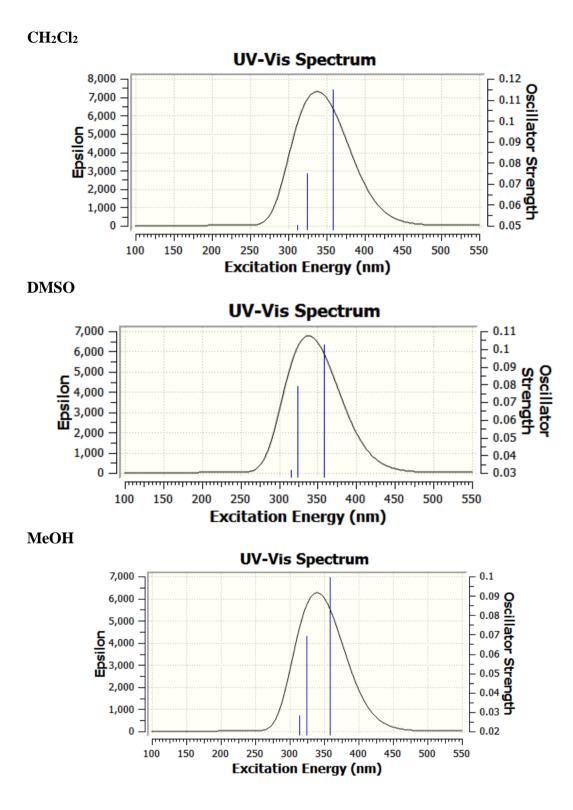

Figure S64.

Table S5. Excitation energy (E), wavelength of maximum absorbance (λ_{max}), and oscillator strengths (*f*) for HOMO-LUMO orbitals in CH₂Cl₂, DMSO and MeOH for compound **6c**. Calculated at the TD-DFT (SCRF(PCM))-B3LYP/cc-pVTZ level.

Solvente	Eletronic	Energy	λmax	Main Orl	bital Transition	F	
	Transitions	(eV)	(nm)				
	$S_0 \rightarrow S_1$	3.4565	358.70	98 -> 99	0.69241	0.1148	
	$S_0 \rightarrow S_2$	3.8209	324.49	96 -> 99	0.23182	0.0752	
		5.8209	524.49	97 -> 99	0.66346	0.0732	
CH_2Cl_2	$S_0 \rightarrow S_3$			95 -> 99	0.60326		
		3.9770	311.75	96 -> 99	0.33090	0.0506	
				97 -> 99	-0.10859		
	$S_0 \rightarrow S_1$	3.4611	358.22	98 -> 99	0.69353	0.1023	
	$S_0 \rightarrow S_2$			$96 \rightarrow 99$	_		
		3.8225	324.36	0.26777		0.0792	
DMSO				97 -> 99			
				0.64997			
	$S_0 \rightarrow S_3$			95 -> 99	0.60022		
	0 10 5	3.9366	314.95	96 -> 99	0.33641	0.0317	
				97 -> 99	0.12037		
	$S_0 \rightarrow S_1$	3.4639	357.93	98 -> 99	0.69299	0.0995	
	$S_0 \rightarrow S_2$	2 0 2 4 1	224.22	96 -> 99	-0.27534	0.0602	
		3.8241	324.22	97 -> 99	0.64688	0.0693	
MeOH	$S_0 \rightarrow S_3$			95 -> 99	0.61191		
		3.9423	314.50	96 -> 99	0.31674	0.0284	
				97 -> 99	0.11425		

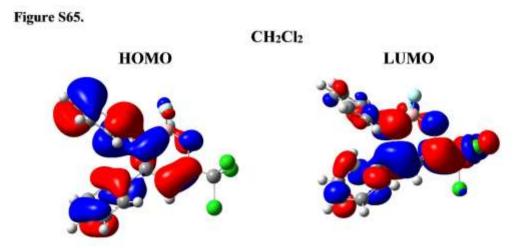
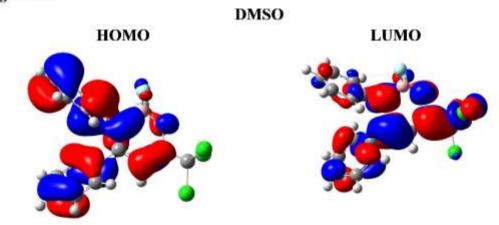
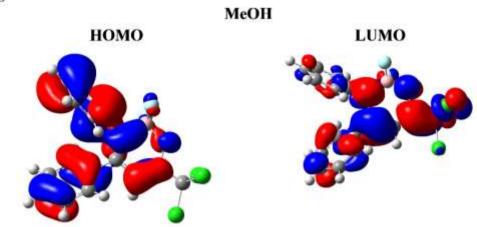
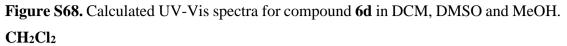
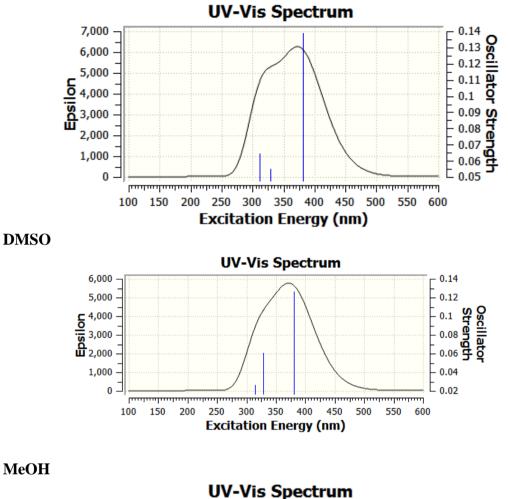
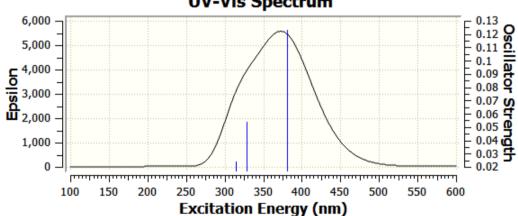
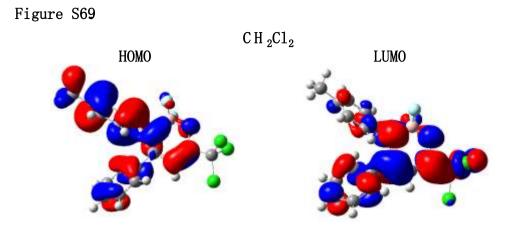


Figure S66.

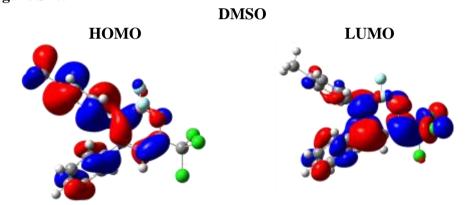
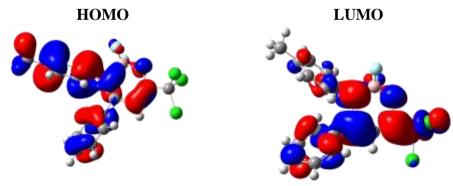




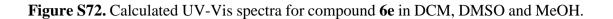

Figure S67.




Table S6. Excitation energy (E), wavelength of maximum absorbance (λ_{max}), and oscillator strengths (*f*) for HOMO-LUMO orbitals in CH₂Cl₂, DMSO and MeOH for compound **6d**. Calculated at the TD-DFT (SCRF(PCM))-B3LYP/cc-pVTZ level.

Solvente	Eletronic	Energy	λmax	Main Orb	oital Transition	F
	Transitions	(eV)	(nm)			
	$S_0 \rightarrow S_1$	3.2544	380.98	102 ->103	0.69992	0.1387
	$S_0 \rightarrow S_2$	3.7778	328.19	100 ->103	-0.13860	0.0550
		5.///0	526.19	101 ->103	0.69026	0.0330
CH_2Cl_2	$S_0 \rightarrow S_3$	3.9832	311.27	99 ->103	0.59005	0.0647
		5.9652	311.27	100 ->103	-0.36075	0.0647
	$S_0 \rightarrow S_1$	3.2558	380.81	102 ->103	0.70024	0.1263
	$S_0 \rightarrow S_2$			100 ->103	_	
DIGO		3.7751	328.43	0.14824	101	0.0605
DMSO				->103	0.68828	
	$S_0 \rightarrow S_3$	2 0 2 0 4	214 72	99 ->103	0.62403	0.0261
		3.9394	314.73	100 ->103	0.30944	0.0261
	$S_0 \rightarrow S_1$	3.2581	380.54	102 ->103	0.69998	0.1234
	$S_0 \rightarrow S_2$	2 7771	220.25	100 ->103	-0.15716	0.0540
MeOH		3.7771	328.25	101 ->103	0.68630	0.0540
	$S_0 \rightarrow S_3$	2 0 4 5 1	214 20	99 ->103	0.63143	0.0228
		3.9451	314.28	100 ->103	-0.29398	0.0238


Figure S71.

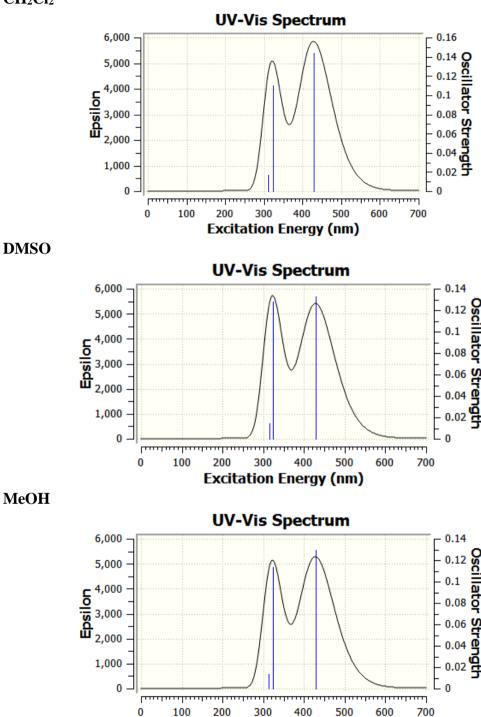


Table S7. Excitation energy (E), wavelength of maximum absorbance (λ_{max}), and oscillator strengths (*f*) for HOMO-LUMO orbitals in CH₂Cl₂, DMSO and MeOH for compound **6e**. Calculated at the TD-DFT (SCRF(PCM))-B3LYP/cc-pVTZ level.

Solvente	Eletronic Transitions	Energy (eV)	$\lambda \max_{(nm)}$	Main Orb	ital Transition	F
	$S_0 \rightarrow S_1$	2.8912	428.83	106 ->107	0.70356	0.1437
	$S_0 \rightarrow S_2$			104 ->107	_	
CH_2Cl_2		3.8371	323.12	0.18783		0.1100
				105 -> 107	0.67812	
	$S_0 \rightarrow S_3$	3.9917	310.61	103 ->107	0.66599	0.0170
		3.9917	510.01	104 ->107	-0.20660	0.0170
	$S_0 \rightarrow S_1$	2.8904	428.95	106 ->107	0.70360	0.1327
DMSO	$S_0 \rightarrow S_2$			104 ->107	-	
		3.8281	323.88	0.17206		0.1277
				105 ->107	0.68097	
	$S_0 \rightarrow S_3$	3.9450	314.28	103 ->107	0.61897	0.0141
		5.9450	514.20	104 ->107	-0.32463	0.0141
	$S_0 \rightarrow S_1$	2.8936v	428.48	106 ->107	0.70350	0.1296
	$S_0 \rightarrow S_2$	3.8319	323.56	104 ->107	-0.18571	0.1139
		5.0519	525.50	105 ->107	0.67745	0.1139
MeOH	$S_0 \rightarrow S_3$	3.9510	313.80	103 ->107	0.63214	0.0134
		5.7510	515.00	104 ->107	-0.29783	0.0154

CH₂Cl₂

Excitation Energy (nm)

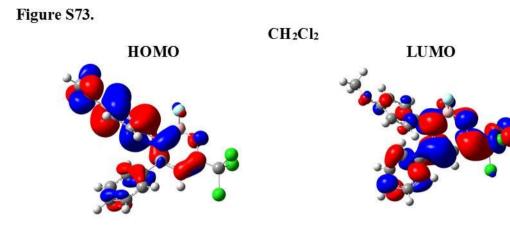


Figure S74.

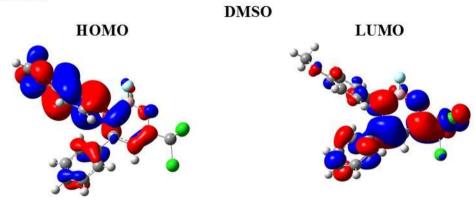
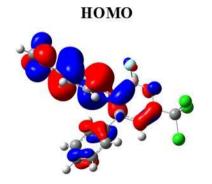
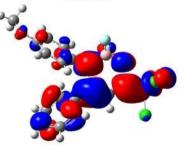
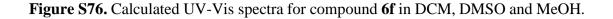




Figure S75.



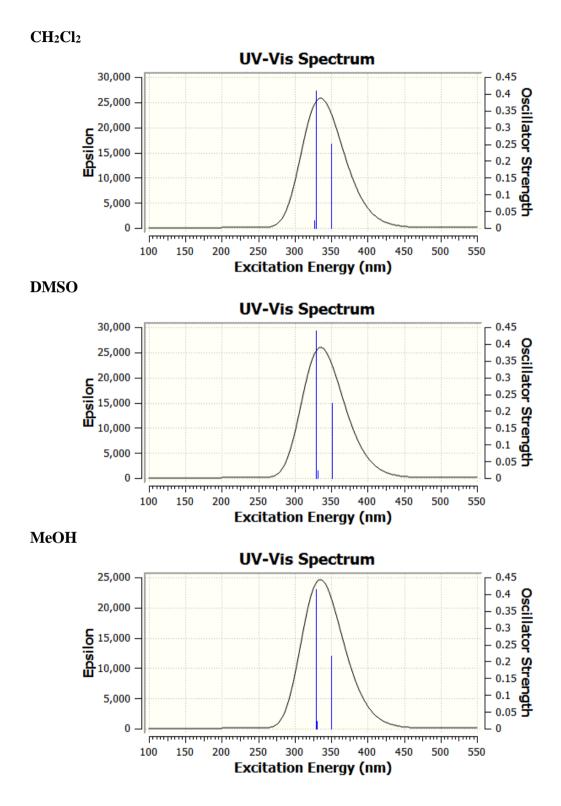


Table S8. Excitation energy (E), wavelength of maximum absorbance (λ_{max}), and oscillator strengths (*f*) for HOMO-LUMO orbitals in CH₂Cl₂, DMSO and MeOH for compound **6f**. Calculated at the TD-DFT (SCRF(PCM))-B3LYP/cc-pVTZ level.

Solvente	Eletronic	Energy	λmax	Main Orb	ital Transition	F
	Transitions	(eV)	(nm)			
	$S_0 \rightarrow S_1$	3.5466	349.59	108 ->110	0.17814	0.2502
		5.5400	549.59	109 ->110	0.67653	0.2302
CH_2Cl_2	$S_0 \rightarrow S_2$			104 ->110	0.14865	
				104 ->111	0.15791	
		3.7732	328.60	108 ->110	0.63710	0.4102
				109 ->110	_	
				0.16808		
	$S_0 \rightarrow S_3$	3.7919	326.97	107 ->110	0.69116	0.0238
	$S_0 \rightarrow S_1$	2 5 2 1 9	251.05	108 ->110	0.12826	0 2227
		3.5318	351.05	109 ->110	0.68633	0.2227
	$S_0 \rightarrow S_2$	3.7419	331.34	107 ->110	0.69158	0.0227
DMSO				107 ->111	-0.10871	0.0227
	$S_0 \rightarrow S_3$			104 ->110	0.13451	
		3.7631	329.47	104 ->111	0.13661	0.4408
		5.7051	529.47	108 ->110	0.65569	0.4408
				109 ->110	-0.12666	
	$S_0 \rightarrow S_1$	3.5390	350.34	108 ->110	0.13849	0.2162
		5.5590	550.54	109 ->110	0.68407	0.2102
	$S_0 \rightarrow S_2$	3.7485	330.76	107 ->110	0.69267	0.0217
MeOH		5.7405	550.70	107 ->111	-0.10681	0.0217
	$S_0 \rightarrow S_3$			104 ->110	0.14919	
		3.7718	328.72	104 ->111	0.15167	0.4146
		5.//10	528.12	108 ->110	0.64870	0.4140
				109 ->110	-0.13342	

S75

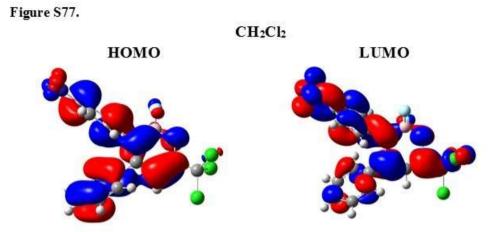
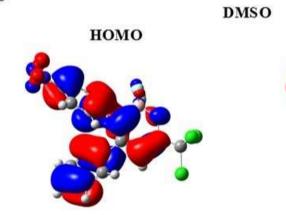



Figure S78.

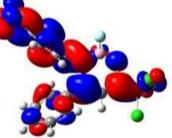
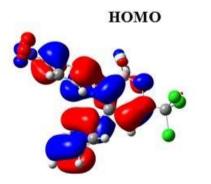
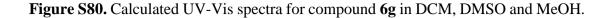



Figure S79.



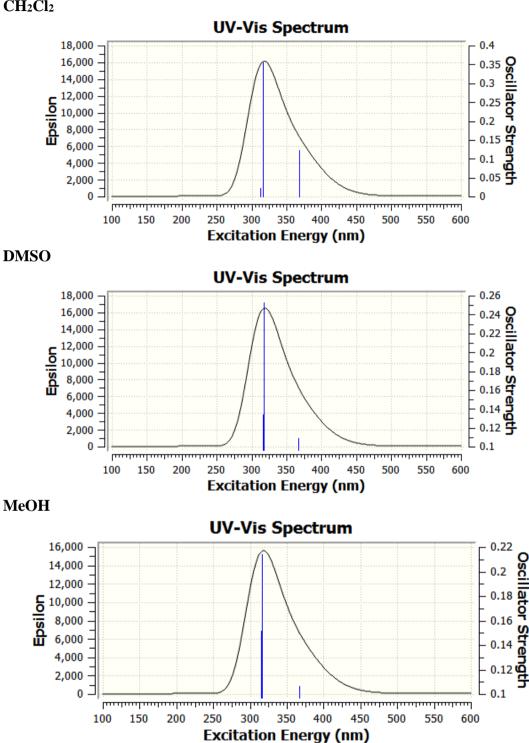

MeOH

Table S9. Excitation energy (E), wavelength of maximum absorbance (λ_{max}), and oscillator strengths (*f*) for HOMO-LUMO orbitals in CH₂Cl₂, DMSO and MeOH for compound **6g**. Calculated at the TD-DFT (SCRF(PCM))-B3LYP/cc-pVTZ level.

Solvente	Eletronic	Energy	λmax	Main Orb	ital Transition	F
	Transitions	(eV)	(nm)			
	$S_0 \rightarrow S_1$	3.3706	367.84	102 ->103	0.69663	0.1218
	$S_0 \rightarrow S_2$			99 ->103	0.14231	
CH_2Cl_2		3.9233	316.02	100 ->103	0.16043	0.3557
				101 ->103	0.66157	
	$S_0 \rightarrow S_3$	3.9650	312.69	100 ->103	0.67958	0.0223
		5.9050	512.09	101 ->103	-0.13450	0.0225
	$S_0 \rightarrow S_1$	3.3773	367.11	102 ->103	0.69708	0.1092
DMSO	$S_0 \rightarrow S_2$	3.9085	317.21	100 ->103	0.45508	0.2532
				101 ->103	0.52444	0.2352
	$S_0 \rightarrow S_3$			99 ->103	-0.13004	
		3.9246	315.91	100 ->103	0.53220	0.1343
				101 ->103	-0.42768	
	$S_0 \rightarrow S_1$	3.3794	366.89	102 ->103	0.69670	0.1066
	$S_0 \rightarrow S_2$	3.9166	316.56	100 ->103	0.49542	0.2142
		5.9100	510.50	101 ->103	0.48747	0.2142
MeOH	$S_0 \rightarrow S_3$			99 ->103	-0.14734	
		3.9309	315.41	100 ->103	0.49462	0.1517
				101 ->103	-0.46412	

CH₂Cl₂

S78

Figure S81.

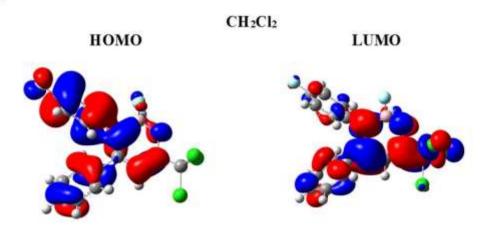
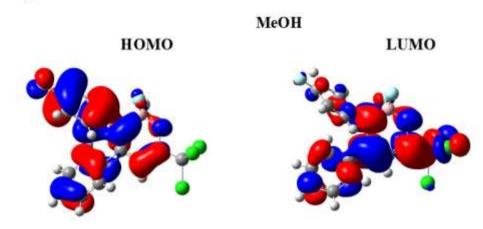



Figure S82.

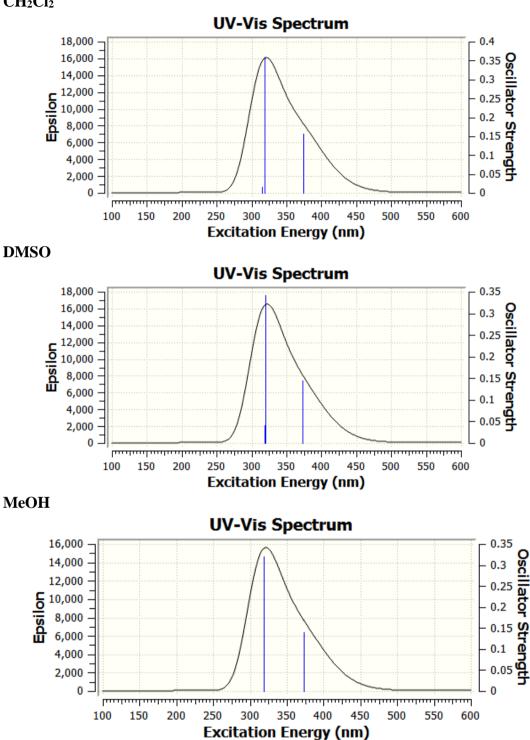

Figure S83.

Table S10. Excitation energy (E), wavelength of maximum absorbance (λ_{max}), and oscillator strengths (*f*) for HOMO-LUMO orbitals in CH₂Cl₂, DMSO and MeOH for compound **6h**. Calculated at the TD-DFT (SCRF(PCM))-B3LYP/cc-pVTZ level.

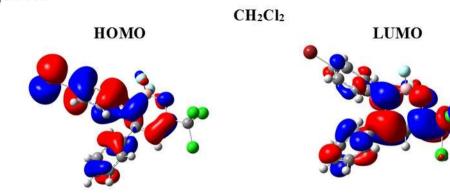

Solvente	Eletronic	Energy	λmax	Main Orb	ital Transition	F
	Transitions	(eV)	(nm)			
	$S_0 \rightarrow S_1$	3.3140	374.12	115 ->116	0.69941	0.1570
	$S_0 \rightarrow S_2$	3.8941	318.39	112 ->116	-0.17641	0.2599
CH_2Cl_2		5.8941	516.39	114 ->116	0.66920	0.3588
	$S_0 \rightarrow S_3$	3.9371	314.91	113 ->116	0.69238	0.0165
	$S_0 \rightarrow S_1$	3.3232	373.08	115 ->116	0.69933	0.1443
DMSO	$S_0 \rightarrow S_2$			112 ->116	-0.14436	
		3.8804	319.51	113 ->116	0.24642	0.3429
				114 ->116	0.63880	
	$S_0 \rightarrow S_3$	3.8931	318.47	113 ->116	0.65601	0.0414
		5.8951	510.47	114 ->116	-0.22534	0.0414
	$S_0 \rightarrow S_1$	3.3252	372.86	115 ->116	0.69914	0.1406
	$S_0 \rightarrow S_2$			112 ->116	-0.15527	
		3.8892	318.79	113 ->116	0.26336	0.3194
MeOH				114 ->116	0.62962	
	$S_0 \rightarrow S_3$			112 ->116	0.10542	
		3.8987	318.01	113 ->116	0.64922	0.0435
				114 ->116	-0.23948	

Figure S84. Calculated UV-Vis spectra for compound 6h in DCM, DMSO and MeOH.

CH₂Cl₂

Figure S85.

DMSO

MeOH

Figure S86.

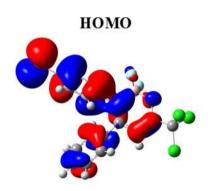
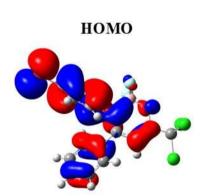
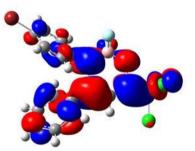




Figure S87.

LUMO

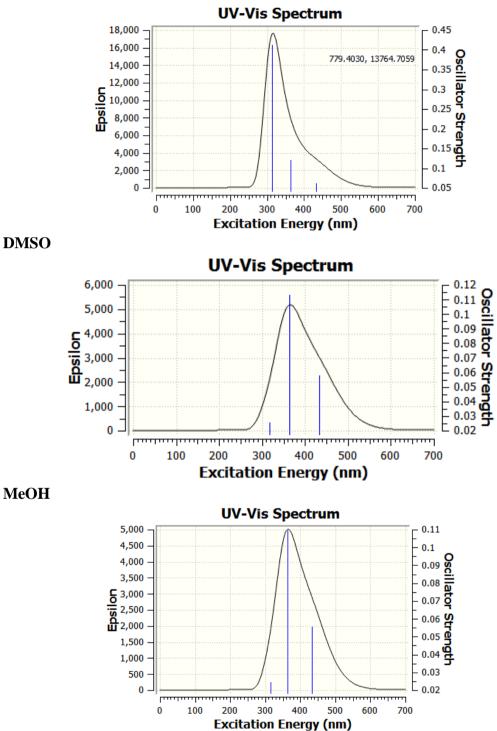


Table S11. Excitation energy (E), wavelength of maximum absorbance (λ_{max}), and oscillator strengths (*f*) for HOMO-LUMO orbitals in CH₂Cl₂, DMSO and MeOH for compound **6i.** Calculated at the TD-DFT (SCRF(PCM))-B3LYP/cc-pVTZ level.

Solvente	Eletronic	Energy	λmax	Main Orbital Transition	F
	Transitions	(eV)	(nm)		
	$S_0 \rightarrow S_1$	2.8648	432.79	111 -> 112 0.70382	0.0626
	$S_0 \rightarrow S_2$	3.4160	362.95	110 -> 112 0.69952	0.1202
CH_2Cl_2	$S_0 \rightarrow S_3$			107 -> 112 0.16602	
		3.9523	313.70	108 -> 112 0.20495	0.4126
				109 -> 112 0.64650	
	$S_0 \rightarrow S_1$	2.8674	432.39	111 -> 112 0.70380	0.0577
DMSO	$S_0 \rightarrow S_2$	3.4161	362.94	110 -> 112 0.69961	0.1130
	$S_0 \rightarrow S_3$	3.9143	316.74	108 -> 112 0.67844	0.0258
		5.9145	510.74	109 -> 112 0.17100	0.0238
	$S_0 \rightarrow S_1$	2.8681	432.28	111 -> 112 0.70379	0.0556
	$S_0 \rightarrow S_2$	3.4183	362.71	110 -> 112 0.69954	0.1097
	$S_0 \rightarrow S_3$	3.9204	216.26	108 -> 112 0.67860	0.0246
MeOH		3.9204	316.26	109 -> 112 0.16929	0.0246

Figure S88. Calculated UV-Vis spectra for compound 6i in DCM, DMSO and MeOH.

S84

Figure S89

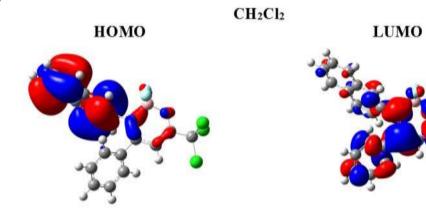
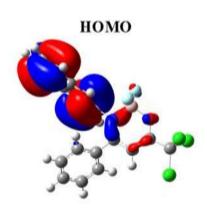
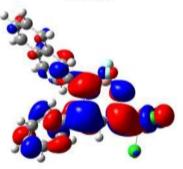
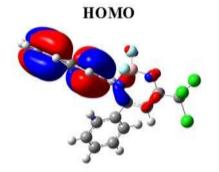
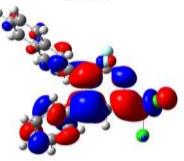



Figure S90.

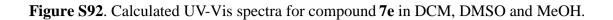
LUMO

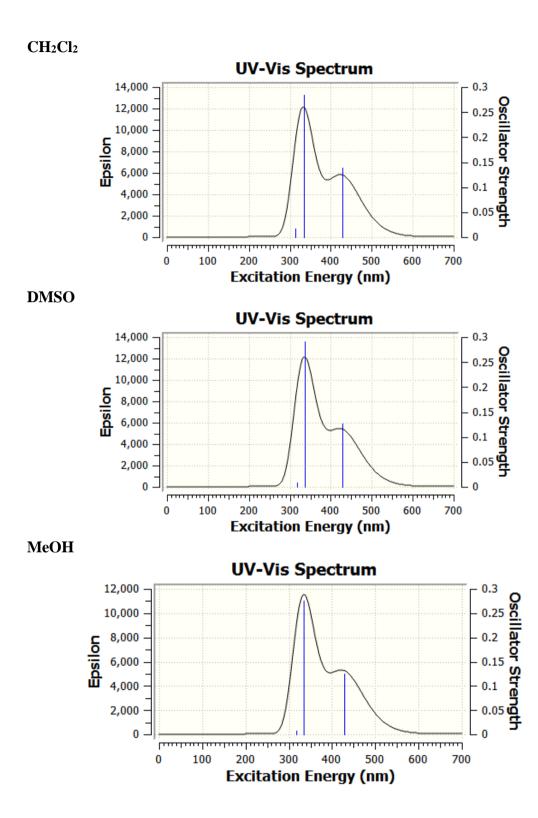



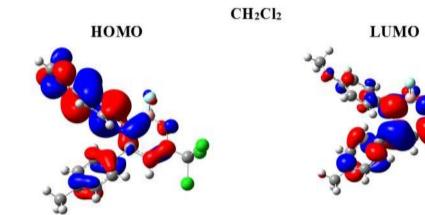

Figure S91.

MeOH

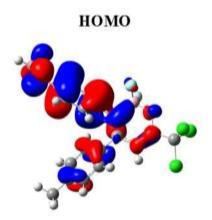
DMSO




LUMO


Table S12. Excitation energy (E), wavelength of maximum absorbance (λ_{max}), and oscillator strengths (*f*) for HOMO-LUMO orbitals in CH₂Cl₂, DMSO and MeOH for compound **7e.** Calculated at the TD-DFT (SCRF(PCM))-B3LYP/cc-pVTZ level.

Solvente	Eletronic	Energy	λmax	Main Orbital Transition	F
	Transitions	(eV)	(nm)		
	$S_0 \rightarrow S_1$	2.8972	427.95	110 -> 111 0.70357	0.1386
	$S_0 \rightarrow S_2$	3.7197	333.32	109 -> 111 0.69794	0.2851
CH_2Cl_2	$S_0 \rightarrow S_3$	3.9445	314.32	107 -> 111 0.53902	0.0171
		5.9445	514.52	108 -> 111 -0.44496	0.0171
	$S_0 \rightarrow S_1$	2.8937	428.46	110 -> 111 0.70364	0.1270
DMSO	$S_0 \rightarrow S_2$	3.6931	335.72	109 -> 111 0.69935	0.2910
	$S_0 \rightarrow S_3$	3.9084	317.23	108 -> 111 0.69697	0.0083
	$S_0 \rightarrow S_1$	2.8971	427.96	110 -> 111 0.70355	0.1242
	$S_0 \rightarrow S_2$	3.7017	334.94	109 -> 111 0.69816	0.2760
МеОН	$S_0 \rightarrow S_3$	3.9132	316.84	108 -> 111 0.69811	0.0078



DMSO

Figure S94

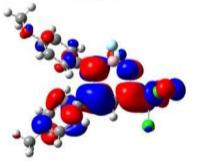


Figure S95.

9. Antimicrobial assays

The *in vitro* antimicrobial activity of the β-enaminoketone and boron complex compounds was assessed against a panel of microorganisms including yeast-like fungi such as *Candida albicans* ATCC 44373, *Candida glabrata* ATCC 10231, *Candida tropicalis* ATCC 750, *Cryptococcus gatti* ATCC 28952 and *Saccharomyces cerevisiae* ATCC 2601. Filamentous fungi such as *Aspergillus flavus*, *Aspergillus fumigatus*, *Aspergillus niger*, *Aspergillus terreus*, as well as a clinical isolate of *Prototheca zopfii*, an alga of medicinal and veterinary importance, were also included. Among the bacteria, we included *Staphylococcus aureus* ATCC 25923, *Bacillus subtilis* ATCC 14028, and *Pseudomonas aeruginosa* ATCC 9027.

The minimal inhibitory concentration (MIC) and the minimal fungicidal/bactericidal/algacidal concentrations were determined by broth microdilution methods according to CLSI standards.^{1,2,3} Compounds were dissolved in DMSO and the work solutions were diluted in a culture medium. By further progressive dilutions with the test medium, the required concentrations (80, 40, 20, 10, 5, 2.5, 1.25, 0.62, 0.31 e 0.15 µg/mL) were obtained. The antimicrobial activities were evaluated based on the minimal inhibitory concentration (MIC) according to the CLSI M27-A3 procedures¹ for yeast-like fungi and the *P. zopfii*. The filamentous fungi were tested based on the CLSI M38-A2² procedures and for the bacteria, the procedures described in CLSI M7-A10,³ were employed. Bacteria were initially inoculated into Mueller-Hinton agar and, after overnight growth, approximately five

¹ CLINICAL AND LABORATORY STANDARDS INSTITUTE (CLSI). **Document M07-A10. Reference Method for Dilution Antimicrobial Susceptibility Test of bacteria that grow aerobically; Approved Standard.** 10th ed. Clinical and Laboratory Standards Institute: Wayne, Pennsylvania, USA, 2015.

² CLINICAL AND LABORATORY STANDARDS INSTITUTE (CLSI). **Document M27-S4. Reference Method for Broth Dilution Antifungal Susceptibility Testing of yeasts; Approved Standard.** 4th ed. informational gsupplemetgl. Clinical and Laboratory Standards Institute: Wayne, Pennsylvania, USA, 2012.

³ CLINICAL AND LABORATORY STANDARDS INSTITUTE (CLSI). Document M38-A2. Reference Method for Broth Dilution Antifungal Susceptibility Testing of Filamentous Fungi; Approved Standard. 2nd ed. Clinical and Laboratory Standards Institute: Wayne, Pennsylvania, USA, 2008.

colonies were directly suspended in saline solution until the turbidity matched the turbidity of the McFarland standard (approximately 10⁸ cfu/mL). The suspensions were diluted to 1:100 in saline followed by a new dilution to 1:20 in Mueller-Hinton broth, resulting in a final inoculum concentration of 5×10^4 cfu/mL per well. Yeasts and P. zopfii were inoculated on Sabouraud dextrose agar and the procedures of inoculum standardization were similar; the test medium was RPMI 1640 buffered with MOPS (3-(N-morpholino) propanesulfonic acid), pH 7.0. The filamentous fungi were initially inoculated on potato dextrose agar; after the time required for each species to induce conidium and sporangiospore formation, the inoculum standardization followed that described in the CLSI, M38-A2² protocol. Briefly, each well of the microdilution plate was filled with 100µL of compound diluted in 100µL of the inoculum. The plates were incubated at 35°C/24h for the bacteria strains and the yeast required 48h of incubation (except the Cryptococcus strains that were incubated for 72 h). For all tests growth and negative (inoculum-free) controls were performed. Growth or a lack of growth in the wells containing the antimicrobial agent was determined by comparison with the growth control, indicated by turbidity. The lowest concentration that completely inhibited visible growth of the organism was recorded as the MIC. All tests were carried out in duplicate did accepted if coincident. When the test not coincident they were repeated in duplicate, again.

The minimal fungicidal, bactericidal and algacidal concentrations were determined by subculture of 20 μ L of the content of each well that remained clear. The media employed were Sabouraud dextrose agar for fungi and *P. zopfii* and Mueller-Hinton agar for bacteria. The plates were incubated at 35 °C during the same time periods for MIC determination and the lowest concentration required to demonstrate complete growth absence was named "cidal".

The interpretation of the results was based on fluconazole (yeasts) and amphotericin B (filamentous fungi and *P. zopfii*) breakpoints and based on imipenem for bacterial strains; all according to the CLSI M27-S4¹, M38-A2² and M7-A10³ techniques, respectively.

10. Cytotoxicity assays

The cytotoxic effects of β -enaminoketone boron complex compounds were measured by tetrazolium salt MTT assay⁴ using mouse fibroblast 3T3 cell line as a model. 3T3 cells were grown in DMEM (Dulbecco's Modified Eagle's medium) supplemented with 10% FBS (Fetal Bovine Serum) and antibiotics in a 5% CO₂ atmosphere at 37 °C. 3T3 cells were detached by trypsinization and seeded in 96wells plates at a density of 1×10^5 cells/mL. After incubation for 24 h under 5% CO2 at 37 °C to allow cells to attach to the plates, the spent medium was replaced with 200 μ L of fresh medium containing the compounds in concentrations ranging from 1 to 100 μ g/mL, besides a negative control were only the vehicle (DMSO) was added to the medium. After 24 h of incubation, the supernatant was removed, and 100 µl of fresh medium containing MTT reagent (initially diluted in PBS at 5 mg/mL and then diluted 1:10 in medium without FBS) was then added to the cells. The plates were further incubated for 2 h, after which the medium was removed and 200 µL of DMSO were then added to each well to dissolve the purple formazan product. After 10 min shaking at room temperature, the absorbance of the resulting solutions was measured at 590 nm using a microplate reader (Bio-Rad Laboratories, Hercules, CA). The effect of each treatment was calculated as a percentage of cell viability inhibition against the control.

⁴ Mosmann T. J. Immunol. Methods. 1983, 65, 55.

				MIC ^a /N	⁄IFC [₿]						MIC ^a /					
		Yeas	st			<u>Filamer</u>	ntous fungi		Alga			Bacteria				
										Gram-posit	ive	(ram-negative			
Compounds	C. albincans	C. glabrata	C. tropicalis	C. gatti	S. cerevisiae	A. niger	A. fumigatus	A. flavus	A. terreus	P. zopfii	S. aureus	B. subtilis	K. pneumoniae	S. typhimurium	P. aeruginosa	Cytotoxicity
4a	-	-	-	20/40	-	10/20	-	-	-	0,62/0,62	-	-	-	-	-	>100
4b	-	-	-	20/40	-	10/10	-	-	-	0,62/0,62	-	-	-	-	-	25
4c	-	-	-	-	-	2,5/2,5	-	40/40	-	1,25/5	-	-	-	-	-	25
4d	-	-	-	-	-	2,5/40	-	80/80	-	0,31/0,31	-	-	-	-	-	5
4 e	-	-	-	-	-	2,5/-	-	80/80	-	0,31/0,31	-	-	-	-	-	50
4f	-	-	-	-	-	10/10	-	-	-	2,5/2,5	-	-	-	-	-	5
4g	-	-	-	-	-	2,5/2,5	80/-	20/20	80/-	-	-	-	-	-	-	10
4h	-	-	-	-	-	2,5/2,5	-	-	-	1,25/1,25	-	-	-	-	-	25
4i	-	-	-	-	-	-	-	-	-	10/10	-	-	-	-	-	25
5e	-	-	-	80/80	-	-	-	-	-	40/40	-	-	-	-	-	1
6a	-	-	-	40/80	-	40/40	-	-	-	5/5	-	-	-	-	-	5
6b	-	-	-	20/40	-	10/-	-	-	-	1,25/1,25	-	-	-	-	-	5
6c	80/80	-	-	20/40	-	10/10	80/80	40/40	80/-	0,62/0,62	20/40	20/80	5/10	20/80	-	5
6d	-	-	-	20/20	-	5/5	-	-	-	1,25/1,25	-	80/-	80/-	80/-	80/-	5
6e	-	-	-	20/20	-	5/40	-	40/40	80/80	0,31/0,31	-	-	-	-	-	1
6f	-	-	-	20/20	-	10/20	-	40/40	-	0,31/0,31	-	-	-	-	-	10
6g	-	-	-	20/20	-	10/20	-	40/40	80/-	1,25/1,25	20/80	20/80	10/40	40/80	-	10
6h	-	-	-	40/40	-	5/5	-	-	-	0,62/0,62	-	80/-	-	80/-	80/-	5
6i	40/40	80/80	40/40	20/80	-	5/40	-	20/20	80/-	1,25/1,25	20/40	20/80	5/20	20/80	-	5
7e	-	-	-	-	-	-	-	-	-	40/40	-	-	-	-	-	1
FLZ	4,0	8,0	4,0	2,0	1,0											
AmB						1,0	1,0	1,0	2,0	0,5						
IMP											0,06	2,0	<4,0	≤1,0	2,0	

Table S13. In vitro antimicrobial and cytotoxic activities of β-enaminoketone 4a-i and 5e boron complex 6a-i and 7e against yeast, filamentous fungi, alga and bacteria (MIC/MFC/MBC, μg/mL):

CIM/CFM, Minimal inhibitory concentration/Minimal fungicidal concentration; CIM/CBM, Minimal inhibitory concentration/Minimal bactericidal concentration; C. albincan, Candida albicans ATCC 44373; C. glabrata, Candida glabrata ATCC 10231; C. tropicalis, Candida tropicalis ATCC 750; C. gatti, Cryptococcus gatti ATCC 28952; C. cerevisiae, Saccharomyces cerevisiae ATCC 2601; A. niger, Aspergillus niger (clinical isolate); A. fumigatus, Aspergillus fumigatus (clinical isolate); A. flavus, Aspergillus flavus (clinical isolate); A. terreus, Aspergillus terreus (clinical isolate); Prototheca zopfii (clinical isolate); S. aureus, Staphylococcus aureus ATCC 25923; B. subtilis, Bacillus subtilis ATCC19659; K. pneumoniae, Klebsiella pneumoniae (clinical isolate); S. typhimurium, Salmonela typhimurium ATCC 14028; P. aeruginosa, Pseudomonas aeruginosa ATCC 9027; FLZ, Fluconazole; AmB, Anfotericin B; IMP, Imipenem; -, No activity.