Supplementary Material

1 APPENDIX: EXAMPLE OF TIME DATA MANIPULATION

This section shows how time data are handled in practice when working with Razorback, particularly how

to inspect and organize the data and how to compute impedance.

We consider a fictional situation where one has recorded MT signals (Ex, Ey, Hx, Hy, Hz) on 5 sites (1, 2,

3,4, 5), some with several runs and different sampling rates. The situation could be pictured as follows:

: continuous run sampled at 512 Hz

: continuous run sampled at 1024 Hz

Each channel of each run is stored in one file, meaning that 40 files are involved in this example. Razorback
provides tools to load raw data from some file type and tools to infer tags from the file path. Here, we
assume that the 40 files have been loaded and tagged in 40 SignalSet objects, all gathered in one list,

all_signals.

First, we can inspect some elements of all_signals:

>>> print(len(all_signals))
40

>>> print(all_signals[0@])
SignalSet: 1 channel, 1 run
tags: {’Ex_1’: (0,)}

sampling start stop

512 1970-01-01 @0:01:50 1970-01-01 00:04:10

>>> print(all_signals[14])
SignalSet: 1 channel, 1 run
tags: {’Hz_2’: (0,)}

sampling start stop

512 1970-01-01 00:02:00 1970-01-01 00:03:40

Frontiers 1

Supplementary Material

>>> print(all_signals[19])
SignalSet: 1 channel, 1 run
tags: {’Hz_2’: (0,)}
sampling start stop

1024 1970-01-01 00:06:40 1970-01-01 00:07:30

Printing a SignalSet provides a short and readable report. Here, we see the only run of the Ex channel on

site 1 and two runs of the Hz channel on site 2, one at 512 Hz and the other at 1024 Hz.

The SignalSet objects can be grouped along the same channel using the | operator or along the same

run using the & operator:

>>> print(all_signals[14] | all_signals[19])
SignalSet: 1 channel, 2 runs
tags: {’Hz_2’: (0,)}
sampling start stop
512 1970-01-01 00:02:00 1970-01-01 00:03:40
1024 1970-01-01 00:06:40 1970-01-01 00:07:30
>>> print(all_signals[0] & all_signals[14])
SignalSet: 2 channels, 1 run
tags: {’Ex_1’: (@0,), ’Hz_2’: (1,)}
sampling start stop

512 1970-01-01 00:02:00 1970-01-01 00:03:40

In the first case, the result has 1 channel ("Hz_2") and 2 runs. In the second case, the result has 2 channels
(CEx_1" and "Hz_2’) and 1 run; we can see that the start and stop of the run are adapted to include the largest

comimon run.

Using the | and & operators, we could gather our data in different ways in preparation for different
processings. This would be tedious, even for this small example. Using an Inventory object simplifies the

manipulation. First, we create an inventory from the list of data:

“>>> inv = Inventory(all_signals)

The inventory behaves similar to a list:

Supplementary Material

>>> print(len(inv))

40

>>> print(inv[19])
SignalSet: 1 channel, 1 run

tags: {’Hz_2’: (0,)}

sampling start stop

1024 1970-01-01 00:06:40 1970-01-01 00:07:30

However, the inventory can also inspect its content; for instance, we can see all the tags defined in the

inventory:

>>> print(inv. tags)

set([’Ey_2’, ’Hy_2’, ’Ex_1’, ’Hz_1’, ’Ey_3’, ’Hy_1’, ’Ey_1’, ’Hy_3’, ’Hy_4’,
’Hy_5’, ’Ey_5’, ’Ey_4’, ’Hx_1’, ’Hx_3’, ’Hx_2’, ’Hx_5’, ’Hx_4’, ’Ex_27,
Ex_3’, ’'Hz_5’, ’Hz_4’, ’Hz_3’, ’Hz_2’, ’Ex_4’, ’Ex_5’1)

Using the pack() method, the inventory builds a SignalSet gathering all its content. However, this
operation is not always possible due to the strict structure of a SignalSet. If we perform pack() on the

entire inventory, we receive nothing (None in Python):

>>> print(inv.pack())

None

Instead, we first have to extract a consistent part of the inventory. The filter () method is designed for

this task. To obtain a new inventory containing the ’Ex_2’ channel data, we perform the following:

>>> inv_Ex_2 = inv.filter(’Ex_2’)
>>> len(inv_Ex_2)

3

>>> print(inv_Ex_2[0])

SignalSet: 1 channel, 1 run

tags: {’Ex_2’: (0,)}

sampling start stop

512 1970-01-01 00:00:00 1970-01-01 00:01:40

>>> print(inv_Ex_2[1])
SignalSet: 1 channel, 1 run
tags: {’Ex_2’: (0,)}

Frontiers 3

Supplementary Material

sampling start stop
512 1970-01-01 00:02:00 1970-01-01 00:03:40
>>> print(inv_Ex_2[2])
SignalSet: 1 channel, 1 run
tags: {’Ex_2’: (0,)}
sampling start stop
1024 1970-01-01 00:06:40 1970-01-01 00:07:30

This new inventory can be packed into one SignalSet:

>>> print(inv_Ex_2.pack())

SignalSet: 1 channel, 3 runs
tags: {’Ex_2’: (0,)}
sampling start stop
512 1970-01-01 00:00:00 1970-01-01 00:01:40
512 1970-01-01 00:02:00 1970-01-01 00:03:40
1024 1970-01-01 00:06:40 1970-01-01 00:07:30

The filter () method accepts flexible patterns on tags, allowing, for instance, to build the SignalSet

of one site:

>>> print(inv.filter(’*_2").pack())

SignalSet: 5 channels, 3 runs
tags: {’Ex_2’: (@0,), ’Ey_2’: (1,), ’Hx_2’: (2,),
Hy_27’: (3,), ’'Hz_2’: (4,)}
sampling start stop
512 1970-01-01 00:00:00 1970-01-01 00:01:40
512 1970-01-01 00:02:00 1970-01-01 00:03:40
1024 1970-01-01 00:06:40 1970-01-01 00:07:30

Multiple patterns can be passed; thus, gathering sites 2 and 3 is performed as follows:

>>> print(inv.filter(’*_2’, **_3’).pack())

SignalSet: 10 channels, 3 runs
tags: {’Ex_2’: (0,), ’Ex_3’: (1,), ’Ey_2’: (2,),
Ey_37: (3,), ’Hx_2’: (4,), ’Hx_3’: (5,),

Supplementary Material

sampling
512

512

(8,),

stop
00:01:40
00:03:40

00:07:30

_2’: (6,), 'Hy_3’: (7,), ’Hz_2’:
_37: (9,))
start
1970-01-01 00:00:10 1970-01-01
1970-01-01 00:02:00 1970-01-01
1970-01-01 00:06:40 1970-01-01

In addition to the filter () method, the inventory provides the select_runs() method. This method

can be used to group the data according to the sampling rates:

>>> inv_512

>>> inv_102

= inv.select_runs(f == 512 for f in inv.sampling_rates)

4 = inv.select_runs(f

== 1024 for f in inv.sampling_rates)

Packing these inventories produces the largest common part of the data for each sampling rate:

SignalSet:

tags: { Ex_
"EX_
"Ey_

"Hx_

sampling
512

sampling

1024

"Hy_

"Hy_

SignalSet:

tags: { Ex_
"Ey_
"Hx_

>>> print(inv_512.pack())

20 channels, 1 run

17: (0,), "Ex_2’: (1,), ’Ex_3’: (2,),

47: (3,), 'Ey_1’: (4,), 'Ey.27: (5,),

37: (6,), "Ey_47: (7,), "Hx_1': (8,),

271 (9,), 'Hx_3’: (10,), ’'Hx_4’: (11,),

17: (12,), ’Hy_2’: (13,), ’'Hy_3’: (14,),

4’: (15,), ’Hz_1’: (16,), ’Hz_2’: (17,),

start

1970-01-01 00:02:00

>>> print(inv_1024.pack())

15 channels, 1 run

_37: (18,), 'Hz_4’: (19,)}

stop

1970-01-01 00:03:40

2’: (0,), ’Ex_3’: (1,), ’Ex_5": (2,),

27: (3,), ’Ey_3’: (4,), "Ey.57: (5,),

2’: (6,), "Hx_3’: (7,), ’Hx_5": (8,),

start

1970-01-01 00:06:40

"Hy_2’: (9,), ’'Hy_3’: (1@,), ’Hy_ 5": (11,),

_27: (12,), 'Hz_3’: (13,), ’Hz_5’: (14,)}

stop

1970-01-01 00:07:30

Frontiers

Supplementary Material

If we want to calculate the impedance on site 2 using sites 3 and 4 as RRs, we can use the impedance
function (see section 3.4). This requires gathering in one SignalSet the electric and magnetic channels
from site 2 and the magnetic channels from sites 3 and 4, as well as adding tags indicating which channels
must be used as output, input or remote. Since two sampling rates (512 Hz and 1024 Hz) are involved
on these sites with only partial overlapping of the runs, we must treat each sampling rate separately. The

following shows how to do so for the 512 Hz sampling rate:

>>> sig_2_512 = inv_512.filter (’[EH]ILxyl_2’, ’'HLxyl_3’, ’HLxyl_4’).pack()

>>> t = sig_2_512.tags

>>> t[’E’] = t[’Ex_2’] + t[’Ey_2’]

>>> t[’H’] = t[’Hx_2’] + t[’Hy_2’]

>>> t[’Hremote’] = t.filter_get(’HL[xyl_3’, ’HL[xyl_4’)

>>> print(sig_2_512)

SignalSet: 8 channels, 2 runs

tags: {’Ex_2’: (@,), ’Ey_2’: (1,), 'Hx_2’: (2,),
"Hx_37: (3,), ’Hx_4’: (4,), ’Hy_2’: (5,),
"Hy_3’: (6,), ’Hy_4’: (7,), 'H’: (2, 5),
E’: (@, 1), ’Hremote’: (3, 4, 6, 7)}

sampling start stop

512 1970-01-01 00:00:10 1970-01-01 00:01:40

512 1970-01-01 00:02:00 1970-01-01 00:03:40

Here, we used the tags attribute of the SignalSet (t = sig 2 512.tags) to add the new tag names 'E’,

’H’ and ’Hremote’. We can duplicate the same code for the 1024 Hz sampling rate:

>>> sig_2_1024 = inv_1024.filter (’[EHIL[xyl_2’, ’'HLxyl_3’, ’'HLxyl_4’).pack()
>>> t = sig_2_1024.tags
>>> t[’E’] = t[’Ex_2’] + t[’Ey_2"]
>>> t[’H’] = t[’Hx_2’] + t[’Hy_2’]
>>> t[’Hremote’] = t.filter_get(’HL[xyl_3’, ’HLxyl_4’)
>>> print(sig_2_1024)
SignalSet: 6 channels, 1 run
tags: {’Ex_2’: (@,), ’Ey_2’: (1,), ’Hx_2’: (2,),
"Hx_37: (3,), ’Hy_2’: (4,), ’Hy_3’: (5,),
’B’: (2, 4), ’Hremote’: (3, 5), ’E’: (0, 1)}
sampling start stop

1024 1970-01-01 00:06:40 1970-01-01 00:07:30

Supplementary Material

Note that the lack of data sampled at 1024 Hz on site 4 does not prevent building the SignalSet and that
the "Hremote’ tag is still correctly initialized. Once they are correctly gathered and tagged, computing the
impedance at some frequencies (1 Hz, 8 Hz and 16 Hz in the example) using the two-stage RR method

with a least-squares estimator is performed as follows:

H>>> result = impedance(sig_2_512, [1, 8, 161, remote=’'Hremote’)

Frontiers 7

	Appendix: Example of time data manipulation

