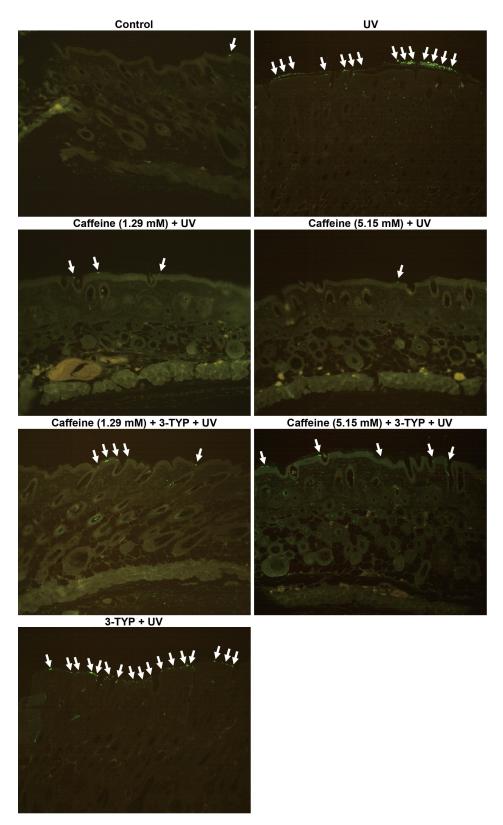

Supplementary Material

Caffeine Targets SIRT3 to Enhance SOD2 Activity in Mitochondria


Huanhuan Xu^{1,2†}, Chunxia Gan^{1,3†}, Ziqi Gao^{1,3}, Yewei Huang^{1,2}, Simin Wu^{1,3}, Dongying Zhang^{1,2*}, Xuanjun Wang^{1,2,4*} and Jun Sheng^{1,4*}

*Correspondence to: Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, No. 452, Fengyuan Road, Panlong District, Kunming 650201, China. E-mail addresses: 757664982@qq.com (Dongying Zhang); jwang@ynau.edu.cn (Xuanjun Wang); shengj@ynau.edu.cn (Jun Sheng).

[†]These authors contributed equally to this work.

Supplementary Figure 1. Caffeine inhibits UV irradiation-induced apoptosis in HaCaT cells. (A) Flow cytometry was used to detect cell apoptosis in UV-irradiated HaCaT cells treated with various concentrations of caffeine. (B) The ratio of apoptotic cells in each group are expressed as percentages. Data are expressed as the mean \pm SEM of three independent experiments. ****P* < 0.001 *vs*. the control; ###*P* < 0.001 *vs*. UV irradiation only.

Supplementary Figure 2. Caffeine effectively inhibits apoptosis in UV-irradiated mouse skin. Apoptosis in mouse skin sections was examined by TUNEL staining and images were captured at $\times 100$ magnification. The green fluorescence represents apoptotic cells.