Supporting Information

Development of anthraquinone derivatives with selectivity for ectonucleoside triphosphate diphosphohydrolases (NTPDases) 2 and 3

Younis Baqi¹*, Mahmoud Rashed^{2,#}, Laura Schäkel², Enas M. Malik², Julie Pelletier³, Jean Sévigny^{3,4} Amelie Fiene², and Christa E. Müller²*

¹Department of Chemistry, Faculty of Science, Sultan Qaboos University, PO Box 36, Postal Code 123, Muscat, Oman, ²PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal Chemistry, University of Bonn, An der Immenburg 4, D-53121 Bonn, Germany, ³Département de Microbiologie-Infectiologie et d'Immunologie, Faculté de Médecine, Université Laval, Québec, QC, Canada, ⁴Centre de Recherche du CHU de Québec, Québec, QC, Canada

Keywords: Anthraquinone; CD39; inhibitor; metalloenzymes; neuroinflammation; NTPDase2; NTPDase3; synthesis

* Corresponding Authors: <u>baqi@squ.edu.om; christa.mueller@uni-bonn.de</u>

On leave from the Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, Al-Azhar University, Cairo 11884, Egypt.

Table of Contents

Contents	Pages
Table S1. Calculated LogD of all anthraquinone derivatives (5, 6& 11–58) using	S2–S9
Instant JChem version 5.3.4	
Figure S1–S14. ¹ H and ¹³ C-NMR spectra of compounds 23, 27–30, 34, 35, 37,	S10-S23
41, 45, 47, 48, 53 , and 57	
Figure S15–S28. LC-MS spectrum of compounds 23, 27–30, 34, 35, 37, 41, 45,	S24–S37
47, 48, 53, and 57	

Table S1. Calculated LogD of all anthraquinone derivatives (5, 6& 11–58) using InstantJChem version 5.3.4

Compound	Structure	ClogD at pH 7.4
5	$ \begin{array}{c} $	-1.12
6	O NH ₂ SO ₃ ⁻ O HN CH ₃	2,80
11	O NH ₂ SO ₃ - O HN CH ₃	0.55
12	O NH ₂ SO ₃ ⁻ O HN	1.39
13	O NH ₂ SO ₃ ⁻ O HN	1.68
14	O NH ₂ SO ₃ O HN	2.28

Figure S1. ¹H (500 MHz) and ¹³C (126 MHz) spectra sodium 1-amino-4-(3-iodophenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (23) in DMSO- d_6

Figure S2. ¹H (500 MHz) and ¹³C (126 MHz) spectra sodium 1-amino-4-(2-(hydroxymethyl)phenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (27) in DMSO- d_6

Figure S3. ¹H (500 MHz) and ¹³C (126 MHz) spectra sodium 1-amino-4-(3-(hydroxymethyl)phenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (28) in DMSO- d_6

Figure S4. ¹H (500 MHz) and ¹³C (126 MHz) spectra sodium 1-amino-4-(4- (hydroxymethylphenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (29) in DMSO- d_6

Figure S5. ¹H (500 MHz) and ¹³C (126 MHz) spectra sodium 1-amino-4-(3- (carboxymethyl)phenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (30) in DMSO- d_6

Figure S6. ¹H (500 MHz) and ¹³C (126 MHz) spectra sodium 1-amino-4-(2,3dichlorophenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (34) in DMSO- d_6

Figure S7. ¹H (500 MHz) and ¹³C (126 MHz) spectra sodium 1-amino-4-(2-carboxy-3-fluorophenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (35) in DMSO- d_6

Figure S8. ¹H (500 MHz) and ¹³C (126 MHz) spectra sodium 1-amino-4-(2-fluoro-4hydroxyphenylamino)-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (37) in DMSO-*d*₆

Figure S9. ¹H (500 MHz) and ¹³C (126 MHz) spectra sodium 1-amino-4-(3phenylsulfanylphenylamino)-9,10-dioxo-9,10-dihydro-anthracene-2-sulfonate (41) in DMSO- d_6

Figure S10. ¹H (500 MHz) and ¹³C (126 MHz) spectra sodium 1-Amino-4-[4-(4-chlorophenylthio)phenylamino]-9,10-dioxo-9,10-dihydroanthracene-2- sulfonate (45) in DMSO- d_6

Figure S11. ¹H (500 MHz) and ¹³C (126 MHz) spectra sodium 1-amino-4-[4-(4-methoxyphenylthio)phenylamino]-9,10-dioxo-9,10-dihydroanthracene-2-sulfonate (47) in DMSO- d_6

Figure S12. ¹H (500 MHz) and ¹³C (126 MHz) spectra sodium 1-amino-4-(3-chloro-4-phenylsulfanyl)phenylamino-9,10-dioxo-9,10-dihydro-anthracene-2-sulfonate (48) in DMSO- d_6

Figure S13. ¹H (500 MHz) and ¹³C (126 MHz) spectra 1-amino-2-bromo-4-(3ethylphenylamino)anthracene-9,10-dione (53) in DMSO- d_6

Figure S14. ¹H (500 MHz) and ¹³C (126 MHz) spectra 4-(3-Fluorophenylamino)-9,10dioxo-9,10-dihydroanthracene-2-sulfonic acid (57) in DMSO- d_6

Figure S15. LC-MS spectrum of compound 23*

* The purity of compound 23 is 100% (retention time: 18.97 belongs to the desired compound

Max. 2.1e8 cps

Figure S16. LC-MS spectrum of compound 27*

* The purity of compound 27 is 100% (retention time: 20.83 belongs to the desired compound

Figure S17. LC-MS spectrum of compound 28*

* The purity of compound 28 is 100% (retention time: 21.60 belongs to the desired compound

Figure S18. LC-MS spectrum of compound 29*

* The purity of compound 29 is 98% (retention time: 21.60 belongs to the desired compound

Figure S19. LC-MS spectrum of compound 30*

* The purity of compound 30 is 100% (retention time: 10.60 belongs to the desired compound

Figure S20. LC-MS spectrum of compound 34*

* The purity of compound **34** is 100% (retention time: 17.29 belongs to the desired compound

Figure S21. LC-MS spectrum of compound 35*

* The purity of compound 35 is 98% (retention time: 14.44 belongs to the desired compound

Figure S22. LC-MS spectrum of compound 37*

* The purity of compound **37** is 97% (retention time: 18.06 belongs to the desired compound

Figure S23. LC-MS spectrum of compound 41*

* The purity of compound **41** is 99.4% (retention time: 11.59 belongs to the desired

compound **41**).

Figure S24. LC-MS spectrum of compound 45*

* The purity of compound 45 is 99% (retention time: 12.02 belongs to the desired compound

Figure S25. LC-MS spectrum of compound 47*

* The purity of compound **47** is 98.9% (retention time: 11.74 belongs to the desired compound **47**).

Figure S26. LC-MS spectrum of compound 48*

* The purity of compound **48** is 97.7% (retention time: 12.06 belongs to the desired compound **48**).

Figure S27. LC-MS spectrum of compound 53*

*The purity of compound 53 is 95% (retention time: 14.83 belongs to the desired compound

Figure S28. LC-MS spectrum of compound 57*

* The purity of compound 57 is 99% (retention time: 10.36 belongs to the desired compound