Supplementary Data for:

Characterization and in vitro analysis of probiotic-derived peptides against drug resistance bacterial infections

Aninda Mazumdar ${ }^{1,2^{*}}$, Yazan Haddad 1,2, Vishma Pratap Sur ${ }^{1,2}$, Vedran Milosavljevic ${ }^{1,2}$, Sukanya Bhowmick ${ }^{1,2}$, Hana Michalkova ${ }^{1}$, Roman Guran ${ }^{1,2}$, Radek Vesely ${ }^{3}$, Amitava Moulick ${ }^{1,2^{*}}$

${ }^{1}$ Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ61300 Brno, Czech Republic
${ }^{2}$ Central European Institute of Technology, Brno University of Technology, Purkynova 123, CZ-612 00 Brno, Czech Republic
${ }^{3}$ Department of Traumatology at the Medical Faculty, Masaryk University and Trauma Hospital of Brno, Ponavka, Czech Republic

*Corresponding author

Aninda Mazumdar, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-mail: anindamazumdar@ gmail.com, xmazumda@mendelu.cz; phone: +420545133350 Amitava Moulick, Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic; E-mail: amitavamoulick @ gmail.com; phone: +420545133350

1. Peptide designing

* * :

Figure S1: Multiple Sequence alignment of the four peptides.
2. Growth curve and viability percentage of the hospital samples

Figure S2: Growth curve and viabilty percentage of the bacterial samples obtained from patient P1 after treatment with PBDM peptides. Data represent the mean $\pm \mathrm{SD}, \mathrm{n}=3$.

Figure S3: Growth curve and viabilty percentage of the bacterial samples obtained from patient P2 after treatment with PBDM peptides. Data represent the mean $\pm S D, n=3$.

Figure S4: Growth curve and viabilty percentage of the bacterial samples obtained from patient P3 after treatment with PBDM peptides. Data represent the mean \pm SD, $n=3$.

Table S1: Overview of the antibacterial activity of PBDM peptide against Hospital samples from P1, P2 and P3.

Sample names	Samples obtained and specific name	Sample identified	PBDM1 MIC concentration ($\mu \mathrm{g} / m L$)	PBDM2 MIC concentration ($\mu \mathrm{g} / m L$)
P1	P1A1	Staphylococcus aureus	25	10
	P1B1	Staphylococcus aureus	10	10
	P1B2	Staphylococcus aureus	10	10
P2	P2A1	Staphylococcus epidermidis	25	10
	P2B1	Klebsiella pneumoniae	10	10
	P2C1	Klebsiella pneumoniae	10	10
	P2C2	Klebsiella pneumoniae	10	10
P3	P3A1	Staphylococcus epidermidis	25	10
	P3B1	Enterobacter cloacae	10	10
	P3C1	Enterobacter cloacae	15	10

3. Multiple sequence alignment by clustal omega

Figure S5: The phylogentic tree of the hospital sample from P1, P2 and P3 patients after MSA using clustal omega showing their close relation with the respective bacterial strains. P1A1, P1B1, P1B2, - Staphylococcus aureus; P2A1, P3A1 - Staphylococcus epidermidis; P2B1, P2C1, P2C2 - Klebsiella pneumoniae; P3B1 and P3C1 - Enterobacter cloacae.

4. Bright feild micropscopic analyis of bacterial cells treated with PBDM peptides

Figure S6: The bright field microscopic images of S. aureus, MRSA,VRSA, E. faecalis, VRE and E. coli after treatment with PBDM peptides, black arrows showing cell rupture, change in cellular morphoology and cell debris but cells in the control were in healthy condition. Scale is $10 \mu \mathrm{~m}$.

5. Calculation of the hemolysis

The percentage of hemolysis was calculated according to the following equation:

$$
h=\frac{A_{t}-A_{c}}{A_{100 \%}-A_{c}} \times 100
$$

Where, h is the percentage of hemolysis; A_{c} is the absorbance of the supernatant from negative control (PBS, pH 7.4); A_{t} is the absorbance of the supernatant from the samples incubated with the AL3; and $\mathrm{A}_{100 \%}$ is the absorbance of the supernatant of positive control (0.1\% Triton X-100), which causes complete lysis of RBCs
6. Detection of VRSA using PBDM-5(6)-Carboxyfluorescein

Figure S7: The bright feild and fluorescence microscopic image of control VRSA cells with and without peptide and no presence of dye. Scale is $20 \mu \mathrm{~m}$.

7. In vivo of PBDM peptide

Figure S8: The uninfected control balb/c without treatment and infection.

Figure S9: The Infected untreated control with infection by VRSA and no treatment. a is Day 1, b is Day 3, c is Day 6, d is Day 7, e is Day 8, and f is Day 14.

8. Purification of peptides by HPLC-UV

In HPLC-UV, the column was used Kinetex EVO C18 (150 x $4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$). Wavelength was set to 214 nm . Mobile phase A consisted of water $+0.1 \%$ formic acid. Mobile phase B consisted of methanol $+0.1 \%$ formic acid. Gradient mode: $0 \mathrm{~min} 3 \% \mathrm{~B} \rightarrow 30 \mathrm{~min} 50 \% \mathrm{~B} \rightarrow$ $50 \mathrm{~min} 3 \% \mathrm{~B} \rightarrow 50.1 \mathrm{~min} 85 \% \mathrm{~B} \rightarrow 55 \mathrm{~min} 85 \%$ B $\rightarrow 55.1 \mathrm{~min} 3 \%$ B $->60 \mathrm{~min} 3 \%$ B \rightarrow STOP. Flow rate was $0.5 \mathrm{~mL} / \mathrm{min}$. Injected sample volume was $20 \mu \mathrm{~L}$. Prior analyses the samples were diluted 100 x with water $+0.1 \%$ formic acid.
9. Colony Forming Unit (CFU) assay

Figure S10: The Colony Forming Unit assay of S. aureus, MRSA, VRSA, E. faecalis, VRE and E. Coli, when treated with PBDM peptides. The positive control plates contain tetracycline and cefoxitin.
10. Cytotoxicity of the PBDM peptides defined as IC_{50}

The IC_{50} was the concentration of the peptides required for 50% inhibition of the growth of the HBl 100 and MDA MB 468 cells. The formula used was:

$$
y=a x+b
$$

Where y is the percentage of the inhibition, a is the slope of the graph, x is the concentration of peptides and b is the y intercept.

Table S2: IC50 values of PBDM peptides.

	C_{50} of PBDM1 $(\mu \mathrm{g} / \mathrm{mL})$	$I C_{50}$ of PBDM2 $(\mu \mathrm{g} / \mathrm{mL})$
Name of the cell lines 100	115.02	103.8
MDA MB 468	67.55	61.52

11. Characterization of PBDM

Figure S11: Characterization of peptides A) HPLC-UV chromatogram of PBDM1 peptide (Peak1) and its conjugate (Peak2), B) HPLC-UV chromatogram of PBDM2 peptide (Peak1) and its conjugate (Peak2); HPLC system consisted of two pumps ESA Model 584 and an autosampler ESA Model 542 (ESA Inc., Chelmsford, USA). C) The Absorbance spectra of PBDM and its conjugates. D) MALDI-TOF mass spectrum of peptide

PBDM1 and its conjugate with 5(6)-Carboxyfluorescein N-hydroxysuccinimide ester (473.39 Da). The mass difference of 358.03 belongs to 5(6)-Carboxyfluorescein without molecule of N -hydroxysuccinimide (115.09 Da), as it was detached after conjugation with peptide; E) The fluorescence spectra of PBDM and its conjugates;
F) MALDI-TOF mass spectrum of PBDM2 and its conjugate, similar as PBDM1; G) ATR-FT-IR analysis. Characteristic amide I band at $1650 \mathrm{~cm}^{-1}$ is indicative of random coil secondary structure of peptides.

