Supplementary Figures

Figure S1. Agarose gel electrophoresis of PCR derived amplicons of four defense related genes from fungal inoculated Richa variety. (A) Lane 1 and 2 depicting that CHS gene sharply amplified (560bp) at $52.6^{\circ} \mathrm{C}$ and $53.4^{\circ} \mathrm{C}$ gradient temperatures; (B) SOD gene amplification (400bp) clearly visible in four lanes at $56.8^{\circ} \mathrm{C}, 57.2^{\circ} \mathrm{C}, 57.6^{\circ} \mathrm{C}$ and $57.9^{\circ} \mathrm{C}$ gradient temperatures; (C) APX gene amplicons of 350 bp in lane 1- Richa and lane 2-ICP8863 (D) β - 1,3-glucanases gene amplicons of 450 bp in lane 1- Richa and lane 2- ICP8863; M-1kb DNA ladder, L-100bp DNA ladder.

Figure S2. Topology of CHS (a) and SOD (b). Predicted secondary structure of CHS (c) and SOD (d); the structure consist of helics (H) and strands by the sheet A, B, C and motif having β helix turn and β hairpin loops.

Supplementary Tables

Table S1: ANOVA test landraces/genotypes for their resistance or susceptibility to Fusarium wilt.

Source of variation	Degrees of freedom	Sum of squares	Mean sum of squares	F cal	F prob
Replications	4	762.019	190.505	0.472	0.756
Genotypes	6	43410.264	7235.044	17.935	0.000
Error	24	9681.737	403.406	-	-
Total	34	-	-	-	-

Table S2: Statistical comparison of collected pigeonpea landraces with genotype ICP 8863 for their resistance or susceptibility to Fusarium wilt.

Landrace name	Variance	T-Statistics
Richa	222.194	$1.5^{* *}$
Desi Nimar	222.178	3.501^{*}
Parwati	83.367	22.041
Desi Tur	194.389	12.83
WB-20/105	1749.867	3.207^{*}

T-Table values are 2.776 and 4.604 at 0.05% and 0.01%, respectively ** Not significantly different at 1 and 5% level;

* Significantly different at 5\% level

Table S3. Physiochemica $@$ operties of the protein CHS and SOD showing the amino acid composition.

Amino acid		CHS		SOD		$\mathrm{CBH}-\infty$	
Ala	(A)	36	9.30\%	11	7.20\%	5	5.40\%
Arg	(R)	17	4.40\%	3	2.00\%	2	2.20\%
Asn	(N)	13	3.30\%	10	6.60\%	6	6.50\%
Asp	(D)	21	5.40\%	10	6.60\%	7	7.60\%
Cys	(C)	7	1.80\%	2	1.30\%	1	1.10\%
Gln	(Q)	14	3.60\%	3	2.00\%	2	2.20\%
Glu	(E)	24	6.20\%	5	3.30\%	2	2.20\%
Gly	(G)	30	7.70\%	29	19.10\%	9	9.80\%
His	(H)	7	1.80\%	8	5.30\%	4	4.30\%
Ile	(I)	23	5.90\%	7	4.60\%	3	3.30\%
Leu	(L)	37	9.50\%	11	7.20\%	8	8.70\%
Lys	(K)	26	6.70\%	6	3.90\%	7	7.60\%
Met	(M)	14	3.60\%	1	0.70\%	4	4.30\%
Phe	(F)	14	3.60\%	5	3.30\%	3	3.30\%
Pro	(P)	21	5.40\%	7	4.60\%	2	2.20\%
Ser	(S)	20	5.10\%	10	6.60\%	13	14.10\%
Thr	(T)	21	5.40\%	11	7.20\%	4	4.30\%
Trp	(W)	4	1.00\%	0	0.00\%	3	3.30\%
Tyr	(Y)	12	3.10\%	0	0.00\%	1	1.10\%
Val	(V)	28	7.20\%	13	8.60\%	6	6.50\%
Pyl	(O)	0	0.00\%	0	0.00\%	0	0.00\%
Sec	(U)	0	0.00\%	0	0.00\%	0	0.00\%

