Treatment and prevention of lung cancer using a Virus-Infected Reprogrammed Somatic cell-derived Tumor cell vaccination (VIReST) regime

Running Title: Stem cell-based lung cancer vaccination

Zhe Zhang¹, Shuangshuang Lu², L S Chard Dunmall³, Zhizhong Wang², Zhenguo Cheng², Zhongxian Zhang², Wenli Yan², Yongchao Chu², Dongling Gao², Na Wang², Yang Li², Jiwei Wang², Yuenan Li², Yupei Ji², Danyang Shan²,Keke Li²,Panpan Wang², Yunshu Dong⁴, Jianzeng Dong⁵, Nick R Lemoine^{2,3}, Duanqing Pei⁶, Lirong Zhang^{7#}, and Yaohe Wang^{2,3#}

Supplementary Figures and Tables

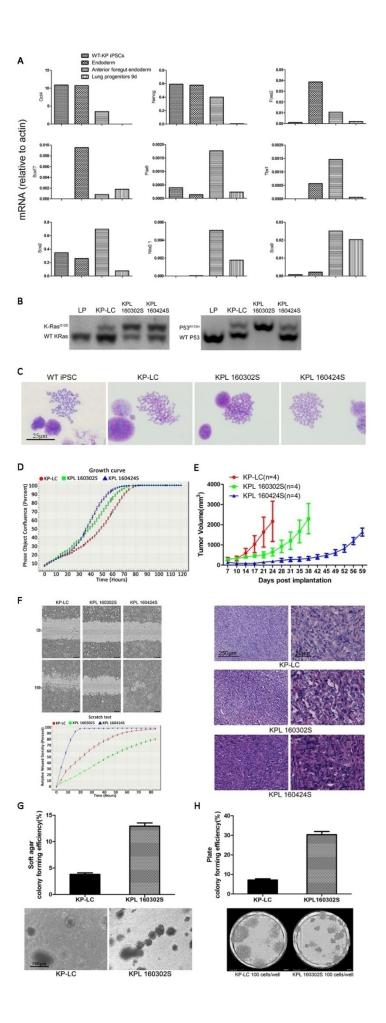


Figure S1. iPS cells from KP littermate mice can be induced to lung cancer cells. (A) Expression of markers for iPSC (Oct4, Nanog, Sox2), endoderm (Foxa2, Sox17), anterior foregut endoderm (Pax9, Tbx1, Sox2, Nkx2.1) and lung progenitors (Nkx2.1, Sox9) were monitored using qPCR. (B) Verification of removal of LSL cassette after lung progenitors were infected using Ad5-Cre. KP-LC has mutant bands of Kras and P53 caused by infection of Ad5-Cre activating expression of the mutations. KPL 160302S and KPL 160424S are lung adenocarcinoma cell lines from KP mice (LSL-Kras^{G12D/+}; LSL-Trp53^{R172H/+}) who have received Ad-Cre intranasally. P53 LOH (loss-of-heterozygosity) occurred in KPL 160302S. (C) Karyotype analysis of KP-LC, KPL 160302S and KPL 160424S. WT iPSC was a normal control. KP-LC, KPL 160302S and KPL 160424S all had obvious chromosome number abnormalities. (D) Cell growth curve of KP-LC, KPL 160302S and KPL 160424S in vitro. (E) Subcutaneous tumor growth curve of B6 mice bearing KP-LC, KPL 160302S and KPL 160424S tumors with the initial dose of 2×10^6 cells/ mouse. Mean \pm SEM is shown. N=7/group. H&E staining of subcutaneous tumors is shown beneath the growth curve. (F) Representative wound healing pictures of KP-LC, KPL 160302S and KPL 160424S 0h and 16h after scratch. Relative wound density was analyzed by Incucyte. (G) Soft agar colony formation assay of KP-LC and KPL 160302S with the initial density of 2500/5000/10000 cells/well. Colony forming efficiency is shown (n=9). (H) Plate colony formation assay of KP-LC and KPL 160302S with the initial density of 50/100/200 cells/well. Colony forming efficiency is shown (n=18).

A	1				В					
	CTAs expression highe	CTAs expression higher in KP-LC than KPL 160424S								
	ENSEMBL_GENE_ID	gene_name	logFC	P.Value	EI	NSEMBL_G	SENE_ID	gene_name	logFC	P.Value
	ENSMUSG00000031227	Magee1	3.818645005	1.49863E-06	E	NSMUSG00	0000031227	Magee1	2.719467245	4.52193E-05
	ENSMUSG00000048602	Morc2b	2.332076163	7.41666E-06	_					
	ENSMUSG00000031434	Morc4	1.782756529	2.24024E-05						
	ENSMUSG00000044566	Cage1	1.618408851	4.7076E-05						
	ENSMUSG00000029279	Brdt	1.406362768	7.63964E-05						
	ENSMUSG00000017057	II13ra1	1.918001407	0.000173632						
C	Cytokin Key	Pa Proteoǫ e−cytokine re TNF s	Focal adhesi signaling pathw athways in cand glycans in cand ceptor interacti	eer - cer - oon -					8	Count
	TNF signaling pathway - Ras signaling pathway - MicroRNAs in cancer - Rap1 signaling pathway - HTLV-I infection -									
										-log10(pvalue)
	0 6	itapis	HTLV-I infecti							11
	ڻ ص									- 10

Chagas disease (American trypanosomiasis)

Hippo signaling pathway

MAPK signaling pathway

ECM-receptor interaction

Malaria ·

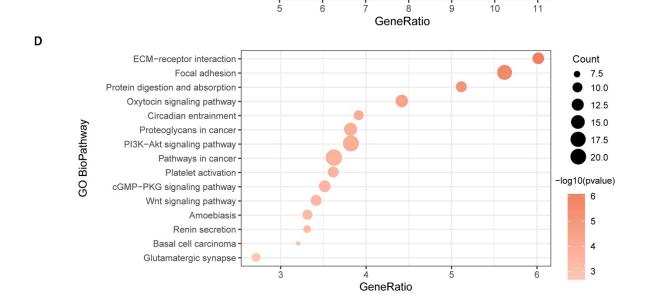


Figure S2. Analysis of gene differential expression. (A) Cancer-testis antigens (CTAs) differential expression between KP-LC and WT-iPSCs. (B) CTAs differential expression between KP-LC and KPL 160424S. (C) Gene Ontology (GO) analysis of gene expression higher in KP-LC than WT-iPSCs (P.Value<0.001). (D) GO analysis of gene expression higher in KP-LC than KPL 160424S (P.Value<0.001).

9

8

7

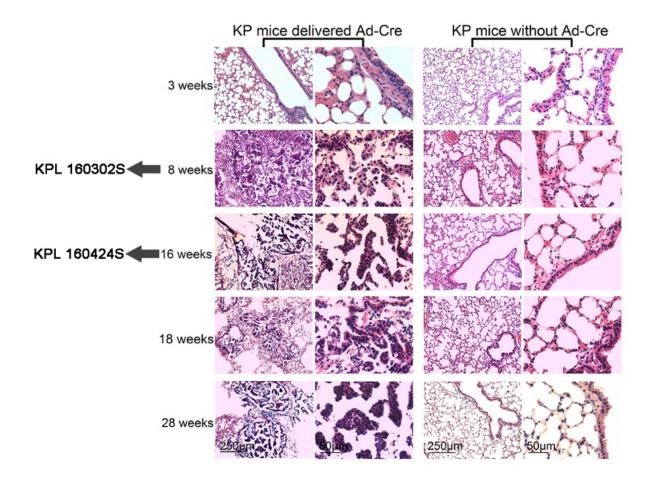


Figure S3. Tumor progression of KP mice after delivery of Ad-Cre. H&E stained lungs from KP mice at various times after intranasal infection with Ad-Cre. KP mice at the same age without delivery of Ad-Cre are shown as a control. KPL 160302S and KPL 160424S were cultured from the 8 weeks and 16 weeks post Ad-Cre inhalation of KP mice.

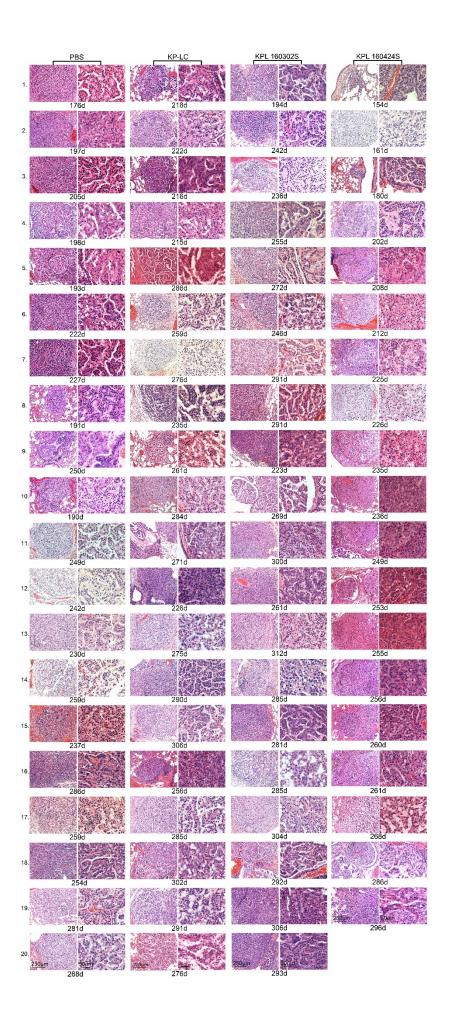


Figure S4. H&E staining of murine lungs after KP-LC, KPL 160302S and KPL 160424S vaccination treatment. Representative histopathology of H&E staining of lungs in the survival experiment with KP-LC, KPL 160302S and KPL 160424S vaccination.

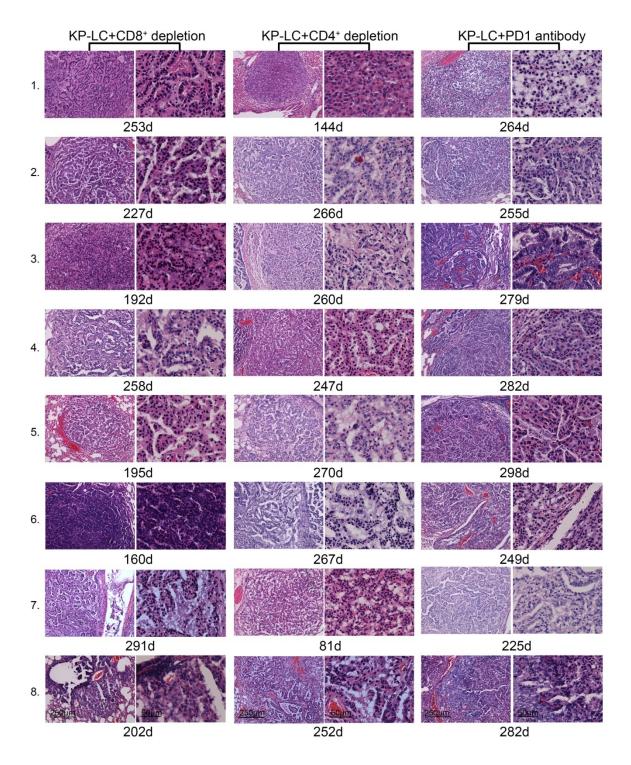


Figure S5. H&E staining of murine lungs after KP-LC VIReST with CD8+ T cells or CD4+ T cell depletion or PD1 antibody. Representative histopathology of H&E staining of lungs in the survival experiment with CD8+ T cells or CD4+ T cells depletion or PD1 antibody.

Table S1. Cell lines created or used in this study

Name	Derivation	Mutations	Notes
WT iPSC	129J/C57Bl6 male mice	None	Un-muatated somatic cells driven to pluripotency.
WT-KP iPSC	129J/C57Bl6 male mice	Inactivated Kras ^{G12D/+} Trp53 ^{R172H/+}	Heterozygous KRas and p53 mutation introduced into WT iPSCs.
KPC	LSL-Kras ^{G12D/+} ; Trp53 ^{R172H/+} ; Pdx-1- Cre mice	Activated Kras ^{G12D/+} Trp53 ^{R172H/+}	Somatic cells containing silent mutations driven to pluripotency. Mutations activated upon differentiation into PPLC to create KPC tumor cells.
KP-AC	129J/C57Bl6 male mice	Activated Kras ^{G12D/+} Trp53 ^{R172H/+}	Muations in WT-KP cells activated after differentiation into PPLCs by infection with Ad5-Cre.
KP-LC	129J/ C57Bl6 male mice	Activated Kras ^{G12D/+} Trp53 ^{R172H/+}	WT-KP iPSCs were differentiated into lung progenitor cells, and infected with Ad5-Cre to activate mutations.
TB11381	LSL-Kras ^{G12D/+} ; Trp53 ^{R172H/+} ; Pdx-1- Cre mice	Activated Kras ^{G12D/+} Trp53 ^{R172H/+}	PDAC cell line isolated from tumours arisen in pancreas of LSL-Kras ^{G12D/+} ; Trp53 ^{R172H/+} ; Pdx-1-Cre transgenic mouse.
KPL 160302S	LSL- Kras ^{G12D/+} ,Trp53 ^{R172H/+} male mice	Activated Kras ^{G12D/+} Trp53 ^{R172H/-}	Lung adenocarcinoma cell line from KP mice 8 weeks after intranasal delivery of Ad-Cre.
KPL 160424S	LSL- Kras ^{G12D/+} ,Trp53 ^{R172H/+} male mice	Activated Kras ^{G12D/+} Trp53 ^{R172H/+}	Lung adenocarcinoma cell line from KP mice 16 weeks after intranasal delivery of Ad-Cre.
KPL-234S	LSL- Kras ^{G12D/+} ,Trp53 ^{R172H} male mice	Activated Kras ^{G12D/+} Trp53 ^{R172H}	Lung adenocarcinoma cell line from KP mice after intranasal delivery of Ad-Cre.
MOSEC	C57Bl6 female mice		By repeated passaging <i>in vitro</i> , the late passage mouse ovarian surface epithelial cells can form tumors <i>in vivo</i> .

The cell lines that were used or created during this study are listed along with their origins and mutation status. PPLC: pancreatic progenitor-like cells; iPSC: induced pluripotent stem

cell; Ad5-Cre: non-replicating adenovirus armed with Cre recombinase; PDAC: pancreatic ductal adenocarcinoma. LC: lung cancer.

Table S2. qRT-PCR primers used for detection of mRNA in iPSCs and differentiated iPSCs

Gene	Primer F	Primer R
Actin	CCTCATGAAGATCCTGACC GA	TTGCCAATAGTGATGACCTG G
Oct4	TAGGTGAGCCGTCTTTCCA C	GCTTAGCCAGGTTCGAGGAT
Nanog	CTCAAGTCCTGAGGCTGAC A	TGAAACCTGTCCTTGAGTGC
Foxa2	TGGTCACTGGGGACAAGGG AA	GCAACAACAGCAATAGAGA AC
Sox17	GAACAGTTGAGGGGCTACA C	GTTTAGGGTTTCTTAGATGC
Pax9	ATCCGCTCCATCACCGACC AAG	CCTTCTCCAATCCATTCACTG CG
Tbx1	CGAGATGATCGTCACCAAG GCA	GTCATCTACGGGCACAAAGT CC
Sox2	CACAACTCGGAGATCAGCA A	CTCCGGGAAGCGTGTACTTA
Nkx2.1	CAGGACACCATGCGGAAC AGC	GCCATGTTCTTGCTCACGTCC C
Sox9	GACAAGCGGAGGCCGAA	CCAGCTTGCACGTCGGTT