Supplementary Data Sheet 1: Meta analysis with the literature reviewed in the manual curation process of the metabolic network.
	Name
	Notes
	References

	Mannitol
	Mannitol transport system deleted, Evidence found in literature that is not metabolized (also ⅕ genes only found in the model).
	(Ogunjobi et al., 2007)⁠

	Sucrose
	Kim, 2004 has evidence against PTS transport system for Xag for the case of sucrose. 
Evidence support transport without lysis of sucrose and hydrolysis at the intracellular level. 
Enzymes required for internal hydrolysis present in the model.
Blast of the transporter suc1 of Xac hit (100%) to Xam protein previously annotated as glycoside-cation-symporter. 
Add reaction to the model. Delete the PTS-sucrose reaction of the model.
	(de Crecy-Lagard et al., 1995; H.-S. Kim, Park, Heu, & Jung, 2004)⁠

	Citrate
	Oxidative metabolism reported in Xpm.
	(Ogunjobi et al., 2007; Zimaro et al., 2011)⁠

	Maltose
	Oxidative metabolism reported in Xpm.
	(Ogunjobi et al., 2007)⁠

	Arabinose
	Oxidative metabolism reported in Xpm.
	(Ogunjobi et al., 2007)⁠

	Trehalose
	Oxidative metabolism reported in Xpm.
	(Mwangi et al., 1999; Ogunjobi et al., 2007)⁠

	Cellobiose
	Oxidative metabolism reported in Xpm.
	(Mwangi et al., 1999; Ogunjobi et al., 2007)⁠⁠

	Fructose
	Oxidative metabolism reported in Xpm.
	(de Crecy-Lagard et al., 1995; Ogunjobi et al., 2007)⁠

	Mannose
	Oxidative metabolism reported in Xpm.
	(de Crecy-Lagard, Binet, & Danchin, 1995)⁠

	Xylose
	Oxidative metabolism reported in Xpm.
	(Déjean et al., 2013; Ogunjobi, Fagade, & Dixon, 2007; Zhang & Chen, 2010)⁠⁠

	Galactose
	Oxidative metabolism reported in Xpm.
	(Ogunjobi et al., 2007)⁠

	Xanthan
	
	(Zhang & Chen, 2010)⁠

	N-acetyl-D-glucosamine (acgam)
	N-Glycans are degraded in Xcc.
	(Dupoiron et al., 2015)⁠

	Acetaldehyde, Formate, Pyruvate
	Exportation reactions added
	

	Entner–Doudoroff (ED)
	First report was done in X. phaseoli (Hochster & Katznelson, 1958) and present in other Xanthomonas .
Clues of “preferentially use of organic acids rather than sugars and secretion of exopolysaccharides” in some Xanthomonas (Fuhrer, 2005).
	(Fuhrer, Fischer, & Sauer, 2005; Hochster & Katznelson, 1958; Madsen & Hochster, 1959)⁠

	Pyruvate dehydrogenase (pyr-accoa)
	Reported and deeply studied in X. campestris due to its importance in the production of Xanthan (virulence factor and industrial product), (Iliev & Ivanova, 2002).
Pyruvate dehydrogenase is a complex of three enzymes. The three enzymes have significant blast in the genome of Xpm and were previously annotated.
Correction of annotation and addition of the reaction.
	(Iliev & Ivanova, 2002)⁠

	Acetate
	Phosphotransacetylase and acetate kinase are not present. Instead, Acetyl-CoA synthetase (ACS) is present.
There is not transport and exchange reactions associated with acetate. However, the transport has been reported in Xcc, (Tang, 2005; Moser, 2014).
The E. coli transporter hit poorly Xpm proteins.
But, the acetate cation (Na+) symporter have been annotated in the Xpm genome previously. Add ACt4pp (BiGG) to the model.
	(Moser, Aktas, & Narberhaus, 2014; Tang et al., 2005)⁠

	Ethanol metabolism (degradation)
	Ethanol resistance has been characterized in Xcc (Bordes, 2011) regulated by the sigma-E factor. 
Although there is no specific experimental evidence of the ethanol degradation pathway, there are reports at the genome level for other Xanthomonas of that pathway. 
Transport by diffusion of ethanol (aqueous porins).
No evidence for acetaldehyde transport
No reaction for ACALD: accoa <--> acald, no evidence found. Deleted.
	(Bordes et al., 2011)⁠

	Ethanolamine
	Metabolism of ethanolamine included, evidence in LPS as virulence factor in Xac. 
Transporter appears as an orphan reaction in DB. 
Xanthomonas not growth up in ethanolamine as carbon source?
How to reconcile these two results?
	(Casabuono, Petrocelli, Ottado, Orellano, & Couto, 2011)⁠

	Lactate
	Absent: D-lactate dehydrogenase and  D-lactate transport via proton symport
Present: L-Lactate dehydrogenase (LDH-L)
Evidence:
LDH-L is reported in Uniprot for Xcc.
Reported as recombinant protein (MyBiosource).
Lactate dehydrogenase has been isolated and its enzymatic activity has been measured in Xcc (Sitkin, 2003).
Non-transport reaction
Solving then within pyruvate metabolism map
	(Sitkin, Tsfasman, Stepnaya, & Kulaev, 2003)⁠

	2-oxoglutarate reversible transport via symport
	The reaction has been reported in Xoo. Surprisingly, a similar transporter is also secreted and anchored into the plant membrane for extraction of akg.
	(Guo et al., 2012)⁠

	L-Glutamine ABC transporter
	Improving annotation: unless non transport literature evidence was found, Blasting of the Glutamine transport ATP-binding protein of E. coli against Xpm, significantly hit several proteins previously annotated as ABC amino acid transporters. 
High levels of glutamine are used for Arabidopsis plants as mechanism of defense. This high levels activate a di-GMP signaling system of defense in Xcc, (an Arabidopsis pathogen). This point could be researched in Xpm later...
	

	Succinate-fumarate interconversion
	The succinate dehydrogenase complex (Xac) is an alternative pathway in Xam model (all the reactions are present in the Xam model):
FRD7. Irreversible (correction of reversibility according to E. coli).
FRD: Succ to Fum (Fad:Fadh2). Correct reversibility according to Zimaro et. al., 2013.
SUCD4: Fadh2:Fad
	(Zimaro et al., 2013)⁠

	Oxaloacetate interconversion Phosphoenolpyruvate
	PPCK: Xcc have only the malic enzyme-PpsA route in gluconeogenesis. Deleted.

PPC reversible, corrected, irreversible
Malate dehydrogenase (oxaloacetate decarboxylating) (NADP+), malic enzyme.

PEPCK: using gtp, irreversible, possible hypothesis to evaluate later?
MNXR71850: using itp, reversible, possible hypothesis to evaluate later?
	

	
	Change Stoichiometry. Cytochrome oxidase
CYTBD - CYTBO3
	

	
	Change Stoichiometry. NADH dehydrogenase
NADH16 - NADH6
	

	
	SUCCT3 – SUCCt2b, Change of reversibility
	

	Growth Media
	Minimal media and full media for Xanthomonas
	(Cohn et al., 2014; Mwangi et al., 1999; Stoyanova, Vancheva, Moncheva, & Bogatzevska, 2014; Zimaro et al., 2013)⁠

	2-keto-3-deoxygluconate
	ED modified pathway
	(S. Kim & Lee, 2006)⁠

	4-Hydroxybenzoate
	Pyruvate: Citric acid cycle and Oxidative phosphorylation
	(Crawford, 1975)⁠

	Adenosine
	Adenosine savage pathway. Important for EPS, cell motility and virulence. ATP synthesized de novo by this reason the kinase enzyme non necessary for growth (non-minimal media requirement).
	(Lu et al., 2009)⁠

	Aminoethanol
	It is reported a non-carbon source for Xanthomonas
	(Swings & Civerolo, 1993)⁠

	BET(Betaine)
	Osmoprotectant synthesized form coline. Derivative aminoacid in plants, glycine betaine.  Intermediate in the catabolic pathway of choline and its precursors. 
	(Mori, Yoshida, & Kitamoto, 1992)⁠

	Cu2
	Copper resitance
	(Voloudakis, Reignier, & Cooksey, 2005)⁠

	D-Galacturonate
	Celullose, plant cell wall.
	(Payne & Carlson, 1957)⁠

	Glucuronate
	Xanthan compound; Hidrolysis of starch
	(Payne & Carlson, 1957)⁠

	Hypoxanthine
	
	(Yuan, Wang, Sun, Wu, & Qian, 2013)⁠

	L_Arginine
	
	(Swings & Civerolo, 1993)⁠

	L_Proline
	
	(Swings & Civerolo, 1993)⁠

	L_Aspartate
	
	(Swings & Civerolo, 1993)⁠

	L_Lysine
	
	(Swings & Civerolo, 1993)⁠

	L_Methionine
	
	(Swings & Civerolo, 1993)⁠

	L_Glutamate
	
	(Rojas, Nishidomi, Nepomuceno, Oshiro, & de Cassia Café Ferreira, 2013)⁠

	L_Tryptophan
	
	(Swings & Civerolo, 1993)⁠

	NH3
	
	(Swings & Civerolo, 1993)⁠

	Nicotinamide ribonucleotide
	NAD savage pathway
	(Gazzaniga, Stebbins, Chang, McPeek, & Brenner, 2009)⁠

	Palmitate
	Saturated fatty acid. Pathogenicity factor.
	(Bishop, Kim, & El Zoeiby, 2005)⁠

	Succinate
	Citric acid cycle: Important for induction of T3SS in bacterium. Krebs, Tricarboxylic Acid cycle TCA.
	

	Gene cluster gumBCDEFGHIJKLM
	16 Kb cluster that are expressed as an operon of a promoter upstream of the first gene in this case is gumB. Identified for Xanthomonas campestris pv. campestris, which is why an alignment of the gene sequence was performed with the Xpm genome with an 85.96% identity, a score of 13.955 and an e-value of 0
	(Schatschneider et al., 2013; Vorhölter et al., 2008)⁠

	gene gumD
	The presence of the gumD gene encoding the enzyme undecaprenyl phosphate glucose phosphotransferase involved in the xanthan formation process was identified. The presence in the Xpm genome was identified by a Blastn alignment with 99.07% identity, a score of 7,350 and an e-value of 0 with Xanthomonas campestris pv. campestris genome
	(Vorhölter et al., 2008)⁠

	gene gumM
	The presence of the gumM gene encoding the beta-1,4-glucosyltransferase enzyme involved in the xanthan formation process was identified. If you corroborated the presence in the Xpm genome through a tBlastn type alignment with 99.57% identity, a score of 1,210 and an e-value of 3.50247 e-123 with Xanthomonas campestris pv. campestris genome
	(Vorhölter et al., 2008)

	gene gumH
	The presence of the gumH gene that encodes the enzyme alpha-1,3-mannosyltransferase involved in the xanthan formation process was identified. The presence in the Xpm genome was corroborated by a tBlastn type alignment with 91.05% identity, a score of 1,786 and an e-value of 3,12024 e-184 with Xanthomonas campestris pv. campestris genome
	(Katzen et al., 1998)⁠

	gene gumK
	The presence of the gumK gene encoding the enzyme 2-beta-glucuronyltransferase involved in the xanthan formation process was identified. The presence in the Xpm genome was corroborated by a tBlastn type alignment with 92.2% identity, a score of 1,435 and an e-value of 6,34862 e-147 with Xanthomonas campestris pv. campestris genome
	(Barreras, Abdian, & Ielpi, 2004)⁠

	gene gumI
	The presence of the gumK gene encoding the beta-1,4-mannosyltransferase enzyme involved in the xanthan formation process was identified. The presence in the Xpm genome was corroborated by a tBlastn type alignment with 85.39% identity, a score of 1,561 and an e-value of 2,19767e-160 with Xanthomonas campestris pv. campestris genome
	(Vorhölter et al., 2008)

	gene gumF
	The presence of the gumF gene that encodes the enzyme with acyltransferase activity involved in the xanthan formation process was identified. The presence in the Xpm genome was corroborated by a tBlastn type alignment with 78.79% identity, a score of 1536 and an e-value of 4.87597 e-157 with Xanthomonas campestris pv. campestris genome
	(Vorhölter et al., 2008)

	gene gumL
	The presence of the gumL gene that encodes the enzyme pyruvyltransferase involved in the xanthan formation process was identified. The presence in the Xpm genome was corroborated by a tBlastn type alignment with 90.91% identity, a score of 1,305 and an e-value of 2.98785 e-133 with Xanthomonas campestris pv. campestris genome
	(Vorhölter et al., 2008)

	gene gumG
	The presence of the gumG gene encoding the enzyme with acyltransferase activity involved in the xanthan formation process was identified. The presence in the Xpm genome was corroborated by a tBlastn type alignment with 67.27% identity, a score of 1,180 and an e-value of 4,38979 e-123 with Xanthomonas campestris pv. campestris genome
	(Vorhölter et al., 2008)

	gene gumB
	The presence of the gumB gene encoding an enzyme involved in the xanthan formation process was identified. The presence in the Xpm genome was corroborated by a tBlastn type alignment with 80.89% identity, a score of 1,095 and an e-value of 2.13405 e-59 with Xanthomonas campestris pv. campestris genome
	Uniprot access number Q93A84-1 , published by Ielmini M.V., Katzen F., Lelpi L. in 2001

	gene gumC
	The presence of the gumC gene that encodes the enzyme involved in the xanthan formation process was identified. The presence in the Xpm genome was corroborated by a tBlastn type alignment with 67.27% identity, a score of 1,180 and an e-value of 4,38979 e-123 with Xanthomonas campestris pv. campestris genome
	(Vorhölter et al., 2008)

	gene gumE
	The presence of the gumE gene that encodes the putative xanthan polymerase enzyme involved in the xanthan formation process was identified. The presence in the Xpm genome was corroborated by a tBlastn type alignment with 86.06% identity, a score of 5,110 and an e-value of 3,62589e-295 with Xanthomonas campestris pv. campestris genome
	(Vorhölter et al., 2008)

	Gene gumJ
	The presence of the gumJ gene encoding an enzyme involved in the xanthan formation process was identified. The presence in the Xpm genome was corroborated by a tBlastn type alignment with 89.31% identity, a score of 2,299 and an e-value of 1,032143 e-238 with Xanthomonas campestris pv. campestris genome
	(Da Silva et al., 2002)⁠

	Biosynthesis of amino acids – Pathway
	The pathway has been built from the reactions involved in the initial reconstruction and that were identified in the reference map published in the KEGG database. This map served as a guide for the reconstruction of the amino acid biosynthesis pathway 
	(Ogata et al., 1999)⁠
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