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Supplementary methods 
 
 
Data collection 
 

We obtained TCGA mRNA-seq and clinical data for gastric cancer (GC) and thyroid 
cancer (TC) tumour matched-normal samples. The data was downloaded from the GDC data 
portal (https://portal.gdc.cancer.gov/) in RPKM and read counts formats, at the gene-level. 
Additional clinical information was obtained from (Cancer Genome Atlas Research Network, 
2014a); (Cancer Genome Atlas Research Network, 2014b); (Liu et al., 2018). The TCGA 
methylation data was acquired from the FireBrowse portal (http://firebrowse.org/), as beta 
values per methylation probe (450k arrays). We also compiled GTEx v6 mRNA-seq and 
phenotypic data, for stomach and thyroid normal samples, from the GTEx portal 
(https://gtexportal.org/home/) in RPKM and read counts formats. The gene annotation was 
downloaded from the GDC portal for the TCGA mRNA-seq data (GENCODE v22) and from 
the GENCODE website (https://www.gencodegenes.org/) for the GTEx mRNA-seq data 
(GENCODE v19). 

A list of human tumour-suppressor genes (TSGs) (Zhao et al., 2013) and oncogenes 
(Liu et al., 2017) were downloaded from https://bioinfo.uth.edu/TSGene/ and 
http://ongene.bioinfo-minzhao.org/index.html, respectively. The Cancer Gene Census 
catalogue (Sondka et al., 2018) was downloaded from https://cancer.sanger.ac.uk/census. A list 
of cancer driver genes was downloaded from (Bailey et al., 2018). The X-chromosomal genes 
known to escape inactivation were obtained from (Tukiainen et al., 2017). 
 
 
Data pre-processing 
 

We assembled the TCGA mRNA-seq (read counts and RPKMs) and clinical data in 
tabular formats using in-house scripts. The datasets comprised 60483 genes across 407 samples 
(375 primary tumours and 32 matched-normal) for GC and 560 samples (502 primary tumours 
and 58 matched-normal) for TC. For downstream analysis we selected only the protein-coding 
and lincRNA genes, comprising 27470 genes, as described in GENCODE v22 annotation. In 
order to remove lowly-expressed genes, we filtered out those without 5 counts-per-million 
(CPM) in at least 20% of the tumour or normal samples. After gene filtering, the mRNA-seq 
datasets comprised 12690 genes for TC and 13674 genes for GC. 

The GTEx mRNA-seq datasets (read counts and RPKMs) comprised 56318 genes, 
across 193 samples for stomach and 323 samples for thyroid tissues. After selecting the protein-
coding and lincRNA genes (27459 genes), as described in GENCODE v19 annotation, we 
removed those genes without 5 CPM in at least 20% of samples. The final mRNA-seq datasets 
comprised 12501 genes for thyroid and 12371 genes for stomach tissues. The CPM values were 
calculated using the cpm function from the edgeR package (Robinson et al., 2010). 
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After merging the TCGA and GTEx samples in each tissue, the final mRNA-seq 
datasets comprised 11734 genes for thyroid and 11842 genes for stomach. A PCA analysis was 
then performed using prcomp function in R. 

We regressed-out potential confounding covariates from the GTEx gene expression 
data (log2 RPKM) using the following multiple linear model: 
 
[1] gi = 𝛃0 + 𝛃1smrin + 𝛃2age + 𝛃3ethncty + 𝛃4mhcancernm + 𝛃5smcenter + 𝛃6smtstptref + 
𝛃7smnabtcht + 𝛃8smtsisch + ɛ 

 
where gi represents the gene expression for gene i, 𝛃0 the intercept, 𝛃i i ∈ (1, ..., 8), the 
regression coefficients for the covariates, and ɛ the noise term. See table S8 for additional 
information about the covariates. The gene expression corrected for these covariates 
corresponded to the residuals of this model, calculated as: 
 
[2] 𝑔$% = 𝑔$ − 𝑔($ 
 
where 𝑔$% represents the gene expression corrected for these covariates, 𝑔$ the observed gene 
expression and 𝑔($ the predicted gene expression from the model. The linear models were 
calculated using the lm R function. 
 
 
Differential gene expression 
 

We performed the differential expression analyses using the edgeR package. edgeR 
models the variance of the read counts per gene using a negative binomial distribution, and 
applies a generalized linear model (GLM) to account for additional covariates when testing for 
differential expression. 

We performed differential gene expression between genders in TCGA tumour and 
GTEx normal samples from stomach and thyroid. We also performed differential gene 
expression between TCGA tumours and matched-normal samples in each gender. In each 
comparison we created a design matrix taking into account several covariates. In R notation: 
 
Male vs female in TCGA tumour samples: 
[3] design = model.matrix(~ race + ethnicity + age + tumor stage + histology + tss + portion 
+ plate + gender, data = covars.matrix) 
 
Male vs female in GTEx normal samples: 
[4] design = model.matrix(~ smrin + age + ethncty + mhcancernm + smcenter + smtstptref + 
smnabtcht + smtsisch + gender, data = covars.matrix) 
 
Tumour vs matched-normal TCGA samples in each sex: 
[5] design = model.matrix(~ race + ethnicity + age + tss + portion + plate + tissue type, data 
= covars.matrix) 
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where design corresponds to the design matrix, model.matrix the R function used to define the 
design matrices, each term (e.g. age) the respective covariate, and covars.matrix the data frame 
containing the covariates. See Table S8 for additional information about the covariates. In each 
comparison we normalized the read counts using the trimmed-mean of M-values method 
(Robinson and Oshlack, 2010), with the calcNormFactors function. After estimating the 
common and tagwise dispersions with estimateDisp, we fitted a GLM model for each gene 
using glmFit. A likelihood ratio test (LRT) was then applied on the coefficients of tissue type 
(tumour or normal) or gender (male or female) to test for differences between these samples, 
using the glmLRT function. The P-values were adjusted for false discovery rate using the 
Benjamini-Hochberg procedure. 

We selected the differentially expressed genes between genders (sex-biased genes 
[SBGs]) using an FDR lower than 5%, additionally requiring for the differentially expressed 
genes (DEGs) between tumour and matched-normal samples an absolute log2 fold-change 
higher than 1. Tumour and normal-specific SBGs were calculated by intersecting both gene 
sets. The same process was performed to calculate male- and female-specific DEGs between 
tumour and matched-normal samples. 

We also performed a differential expression analysis between genders using the TCGA 
normal samples, adjusted for race, ethnicity, age and portion (Table S8). In this analysis we 
found 11 and 26 SBGs in stomach and thyroid, respectively, and only two normal-specific 
SBGs in both tissues. The relative low number of SBGs, alongside the higher number of 
samples in the GTEx cohort, led us to consider the GTEx dataset for the further analyses in this 
paper. We rationale that the high number of samples in GTEx would help to robustly quantify 
the gender differential transcriptome. 

We also used limma (with voom) differential expression method (Law et al., 2014), 
which assumes a normal distribution for the gene expression data, instead of a negative 
binomial distribution as edgeR. We found an overlap greater than 85% with edgeR (in all 
comparisons), indicating a robust set of called differentially expressed genes. 
 
 
Differential gene promoter methylation 
 

We selected TCGA methylation probes annotated to gene promoter regions using the 
R package IlluminaHumanMethylation450kanno.ilmn12.hg19. Then, for each gene in each 
sample, we calculated the average beta value across the promoter probes. 

The differential gene promoter methylation analysis was performed using a Wilcoxon 
rank-sum test (wilcox.test R function). We assessed differences on gene promoter methylation 
between genders in TC and GC, and between tumour and matched-normal samples in TC, 
independently for each gender. The GC matched-normal samples were not profiled by the 
selected methylation array, hampering the tumour-normal differential methylation analysis in 
GC. The P-values were adjusted for false discovery rate using the Benjamini-Hochberg 
procedure. Genes with FDR < 5% were defined as differentially methylated. 

In GC and TC, 56% of the genes with expression data were covered by methylation 
probes. For the SBGs, 51% in GC and 48% in TC contained information about the differential 
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methylation status (Figure S7A, S7B). For the tumour-normal DEGs in TC, 30% in females 
and 34% in males were profiled by differential methylation (Figure S7C, S7D). 
 
 
Construction of gene co-expression networks 
 

We built gene co-expression networks for each gender in TCGA tumour and GTEx 
normal samples from stomach and thyroid, using the methods in the WGCNA package 
(Langfelder and Horvath, 2008). First, we log2 transformed and transposed the RPKM 
matrices. For the GTEx samples we used the gene expression data after regressing-out the 
confounding covariates. Then, we removed potential outlier samples using a hierarchical 
clustering dendrogram (hclust R function, using average as agglomeration method). The 
distances between samples were calculated using the euclidean distance measure, using the dist 
function. In GC we removed 8 samples in females (cut height = 117) and 4 samples in males 
(123). In TC we removed 3 samples in females (120) and 4 samples in males (100), while in 
thyroid normal tissue we removed 3 samples in females (70) and 1 sample in males (80). 
 
Network construction 

In order to build gene co-expression networks we calculated an adjacency matrix using 
the following expression: 
 

[6] 𝑎$* = |𝑐𝑜𝑟𝑟(𝑔$, 𝑔*)|2 
 
where aij corresponds to the connection strength between gene i (gi) and gene j (gj), |corr| the 
absolute Pearson’s correlation coefficient, and β the soft-thresholding power that approximates 
the network of a scale-free topology. Raising the absolute correlation values to a power 
accentuates high correlations at the expense of low correlations. 
 
Module detection 

After network construction the next step was to find gene modules or clusters of densely 
interconnected genes. For that, we converted the adjacency matrix into a topological overlap 
matrix (TOM). The TOM contains the pairwise relative interconnectedness of all nodes in the 
network. After converting the TOM into a dissimilarity measure (1 - TOM), we identified gene 
modules by cutting off the branches of a hierarchical clustering dendrogram (hclust R function 
using average as agglomeration method). The branches were cut using the Dynamic Hybrid 
algorithm (Langfelder et al., 2008). This method eliminates the need of using constant height 
cutoff values and is more effective in complex dendrograms. The gene expression profiles of a 
module can be summarized by its module eigengene (first principal component). We merged 
highly similar modules if the eigengene Pearson’s correlation was higher than 0.75. Genes 
without module assignment were not considered for further analyses. 

 
We performed the network construction and module detection steps automatically and 

sequentially, using the blockwiseModules function. We used the parameters as shown by the 
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authors in the WGCNA tutorials (tutorial I, section 2.a.) 
(https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
). The only exceptions were the parameters maxBlockSize, power and minModuleSize. In order 
to perform the network construction in a single gene block we increased the maximum block 
size (maxBlockSize) from 5000 (the default) to 20000. This prevents the network module 
assignments from being split into multiple blocks. We estimated the optimal powers that 
approximate the networks of a scale-free topology, using the pickSoftThreshold function. 
Following WGCNA recommendations, we selected the highest power that exceeds the scale-
free topology fit R2 cutoff, set to 0.85 by default. In thyroid the powers were set to 9 for all 
networks, except for the males network in tumours, whose power was set to 10. For stomach 
the powers were set to 4 for all networks. Instead of 30 genes as minimum module size 
(minModuleSize), we opted to keep the default value of 20 genes. Using this approach we built 
8 networks in total. 
 
 
Gender differential co-expression network analysis 

 
We compared male to female networks using a strategy based on (Melé et al., 2015). 

We started by computing the percentage of gene content overlap between each pair of modules, 
where each module belongs to a different network. As an example, given the modules M and 
F in the males and females network, respectively, we calculated the overlap between M and F 
as follows: 
 
[7] 𝑜𝑣𝑒𝑟𝑙𝑎𝑝78 = 	

|7∩8|
;$<(7,8)

× 100 

 
where overlapMF corresponds to the percentage of overlap between M and F, |M ∩ F| is the 
number of genes in common between M and F, and min(M, F) is the length of the smaller 
module. We also calculated a Fisher’s exact test P-value for each overlap, using the 
overlapTable function from the WGCNA package. Based on the P-value and on overlapMF, we 
considered the overlap of a given pair of modules as: 
 

● absent, if P-value > 5% or (P-value < 5% and overlapMF < 20%); 
● low, if P-value < 5% and (20% ≤ overlapMF < 50%); 
● moderate, if P-value < 5% and (50% ≤ overlapMF < 70%); 
● high, if P-value < 5% and (overlapMF ≥ 70%). 

 
For both genders the modules were classified as lowly, moderately or highly-preserved, 

if the overlap with the opposite gender has been defined as low, moderate or high, respectively. 
We honoured the highest overlap when multiple overlaps occurred. As an example, in the 
stomach normal networks from GTEx, the largest module from males (5976 genes) has a high 
and a moderate overlap with two modules from females (with 3903 and 936 genes, 
respectively) (Figure S12B). Therefore, we considered the male module as highly-preserved 
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in females. Modules without overlap with the modules of the opposite gender were classified 
as gender-specific. 
 
 
Association of gender-specific modules with cancer clinical traits 
 

The biological significance of a module can be defined as the absolute correlation 
between the module eigengene E and a sample phenotype P (Langfelder and Horvath, 2008). 
Modules with high biological significance (correlation) can represent pathways associated with 
the phenotype P. We evaluated the biological significance of the gender-specific modules in 
tumours by fitting a linear regression model as follows: 
 
[8] E = 𝛃0 + 𝛃1P + ɛ 
 
where E represents the module eigengene, 𝛃0 the intercept, ɛ the noise term and P the cancer 
clinical traits overall survival (in days), tumour stage (AJCC staging system) and cancer 
histological subtype. In TC, we considered the cancer histological subtypes classical (number 
of samples: 257), follicular (75) and tall cell (26). In GC, the cancer subtypes signet ring (9), 
diffuse (36), intestinal mucinous (14), intestinal NOS (not otherwise specified) (45), intestinal 
papillary (3) and intestinal tubular (39). The association between the modules and the clinical 
traits was then evaluated using the regression-derived R2 and the one-way ANOVA P-values. 
The linear models were calculated using the lm R function. We also evaluated the association 
between survival and the modules eigengene using univariate cox proportional hazard 
regression models. These models were computed using the coxph function for the survival R 
package. 

In a given module related with phenotypic traits, the hub genes (highly connected) are 
the most relevant genes to look for, since their expression profiles can represent that of the 
entire module (Langfelder and Horvath, 2008). In the gender-specific modules associated with 
the cancer histological subtypes, we investigated the cancer subtypes where these genes are 
predominantly expressed. For that we selected the hub genes of each module (with absolute 
intramodular connectivity [|KME|] > 0.8) and tested them for differential expression between 
cancer histological subtypes, using a Kruskal-Wallis rank sum test (kruskal.test R function). 
 

 
Functional enrichment analysis 
 

We performed functional enrichment using hypergeometric tests and gene set 
enrichment analysis (GSEA), implemented in the functions enrichr and GSEA from the 
clusterProfiler R package (Yu et al., 2012). We used gene sets downloaded from the MSigDB 
database (http://software.broadinstitute.org/gsea/msigdb), including C1 positional sets, C2 
KEGG pathways and C5 GO biological processes (BP). We applied GSEA on gene modules 
derived from gene co-expression networks, sorted by KME. The comparison of enrichment 
profiles between gender-specific DEGs over-expressed in tumour or normal tissues was 
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performed using the hypergeometric test implemented in the function compareCluster. The P-
values were adjusted for false discovery rate using the Benjamini-Hochberg procedure. 

The enrichment for TSGs, oncogenes, X-chromosomal genes escaping inactivation and 
differentially methylated genes was performed using a Fisher’s exact test (fisher.test R 
function; alternative = “greater”). 

The backgrounds corresponded to all genes that were analysed in our study, either by 
differential expression or by gene co-expression networks. 

All gene lists reported in this study were annotated with functional gene summaries, 
using the function queryMany from the mygene R package. 
 
 
Code availability 
 

The computational analyses were performed in R 3.6.3 and all the code is available 
under a GNU General Public License V3 in a GitHub project, at the following url: 
https://github.com/abelfsousa/gender_differences. The differential expression analyses were 
performed with edgeR 3.26.8 and the gene co-expression network analyses with WGCNA 1.68. 
The functional enrichment analysis (hypergeometric tests and GSEA) were performed using 
clusterProfiler 3.12.0. Plotting was done using ggplot2 3.2.1, ComplexHeatmap 2.0.0, 
arcdiagram 0.1.12 and eulerr 6.1.0. Data analysis and structuring using dplyr 0.8.3, tidyr 1.0.0 
and the remaining packages included in tidyverse 1.2.1. 
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