
1 Phase Lag Index 

The Phase Lag Index (PLI) was introduced by Stam et al. (2007) as a measure of functional 

connectivity (FC) that is robust against the influence of common sources, a problem often encountered 

in EEG-based FC studies due to volume conduction effects or active reference electrodes (Stam et al., 

2007).  PLI builds on the concept of the Phase-locking value (R), a measure of phase synchronization 

between two dynamic processes proposed by Rosenblum et al. (1996).  In that, two processes are 

considered phase-locked if the difference between their instantaneous phases remain (approximately) 

constant over some time period (Rosenblum et al., 1996, Stam et al., 2007). R takes on values between 

0 and 1, with 0 indicating unsynchronized phases and one indicating perfect synchronization i.e. the 

phase difference remains constant throughout the investigated time period. PLI extends this concept 

by discarding phase differences centered around 0 mod π, that imply instantaneous influence on both 

processes, most likely coming from a common source (either due volume conduction or active 

reference electrodes). This is achieved by calculating an “asymmetry index” of the distribution of phase 

differences, since an asymmetric distribution centered around 0 would imply phase locking with a non-

zero phase difference, while in case of independent processes this distribution is assumed to be flat and 

symmetric (Stam et al., 2007). More precisely, if ∆𝜑(𝑡) denotes the time-resolved differences between 

the instantaneous phases of two processes, PLI can be calculated according to Stam et al. (2007) as 

𝑃𝐿𝐼 = |〈𝑠𝑖𝑔𝑛(∆𝜑(𝑡))〉|, (1) 

where |∙| denotes the absolute value, 〈∙〉 denotes the arithmetic mean and 𝑠𝑖𝑔𝑛(∙) is the sign function. 

Similarly to R, PLI also ranges between 0 and 1, where 0 indicates either no coupling or a locked phase 

difference centered around 0 mod (thus excluding instantaneous effects), while 1 indicates perfect 

phase-locking at a constant phase difference different from 0 mod . For further details on phase 

synchronization and PLI the reader is referred to the original works of Rosenblum et al. (1996) and 

Stam et al. (2007), respectively. 

2 Weighted Phase Lag Index 

The Weighted Phase Lag Index (WPLI) is an extension of PLI that further reduces the effect of volume 

conducted common sources (Vinck et al., 2011). This is achieved by weighing each phase difference 

by the magnitude of the lag, thus phase differences near zero that are more likely to represent common 

sources and/or more susceptible to the presence of random noise contribute only marginally to the 

calculation of WPLI (Vinck et al., 2011, Hardmeier et al., 2014). Accordingly, WPLI can be obtained 

as  

𝑊𝑃𝐿𝐼 =
|〈|∆𝜑(𝑡)|〉𝑠𝑖𝑔𝑛(∆𝜑(𝑡))|

〈|∆𝜑(𝑡)|〉
. (2) 

WPLI is also bounded between 0 and 1, with 0 indicating uncoupled dynamics while 1 indicating 

perfect phase synchronization. Note however, that WPLI attributes the most weights to phase 

differences at 90°.  
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3 Dynamic functional connectivity analysis using PLI 

Unlike Synchronization Likelihood (SL), PLI per se is not computed in a dynamic manner, thus we 

adapted this measure to a sliding window approach. To remain consistent in our analyses, we defined 

the window length as 2 ∗ ( 𝑤1 + 𝑤2) = 2 ∗ (960 + 1959) data points (thus using the same amount of

data for FC estimation at every time point as in the case of SL) and used a step size of one data point 

(Stam and van Dijk, 2002). We calculated PLI between all possible pairs of channels for every time 

point, yielding a dynamic connectivity matrix i.e. one matrix for every time point per subject. 

Subsequently, for every subject the first 215 consecutive matrices were made subject for further 

analysis. For the static FC estimation, we calculated PLI in a pairwise manner using the first 215 data 

points of the preprocessed EEG datasets, yielding one connectivity matrix. All following steps of the 

analysis – namely cost-thresholding, network measure estimation, dynamic analyses (including 

multifractal analysis and modified permutation entropy estimation) and statistical analysis – were 

carried out with the exact same settings as described in the main text. Note, that by applying cost-

thresholding instead of weight-thresholding (where first a fixed threshold weight is set, and then all 

connections below that are discarded) both SL- and PLI- derived networks had the same connection 

densities and thus reorganizations of network topology took place roughly on the same scale. This is 

important, as though both SL and PLI are bounded between 0 and 1, they took on their values at rather 

different ranges with PLI and SL mostly being bounded in the range [0; 0.1] and [0; 0.4], respectively 

(see Figure 3A and Figure S1A). Finally, machine learning classification was again carried out 

following the exact same pipeline as described in the main text. 

4 Dynamic functional connectivity analysis using WPLI 

The WPLI-based connectivity analysis was carried out in the exact same fashion as described 

previously for PLI. 
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5 Results derived from PLI- and WPLI based analyses 

Results are presented in the same manner as those in the main text, using the same notation. While 

results obtained from PLI-based analysis are discussed in the same detail as those in the main text, only 

findings that indicated significant between-group differences are included from the WPLI-based 

analysis (except for summary statistics of the surrogate data testing for true multifractality, which is 

also reported here). 

5.1 Static functional connectivity 

Static synchronization matrices again revealed a high degree of similarity in topology between HC and 

SZ groups (Supplementary Figure 1A). The clusters of stronger connections linking the frontal with 

the occipital as well as parietal regions were found less defined in comparison to SL matrices. 

Moreover, in contrast to results acquired from SL analysis, neither cost-dependent (Supplementary 

Figure 1B) nor AUC analysis (Supplementary Figure 1C) revealed any significant differences 

between HC and SZ groups, although a tendency of higher D, C and E in SZ was still apparent. As 

expected, the cost had a significant effect on all three network measures in both groups 

(Supplementary Table 1), with their values increasing as a function of K. 
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Supplementary Figure 1. Group-average connectivity matrices and results of static functional 

connectivity analysis. A: Group-average static connectivity matrices for healthy controls (left) and 

patients with schizophrenia (right). Channels are grouped according to macroanatomical brain regions. 

B: Results of the cost-dependent analysis. Data corresponding to healthy controls is marked in blue, 

while those of patients with schizophrenia are marked in orange. Dots mark median values, the shaded 

area refers to the 25th and 75th percentiles, and vertical lines range from 10th to 90th percentiles. 

Asterisk marks significant group difference (p<0.05) after false discovery rate acquired with two 

sample t-test. C: Static FC results for all three network measures.  In each violin plot the central black 

line indicates the mean and the central red line indicates the median. The lower and upper horizontal 
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lines of the rectangle mark the 25th and 75th percentile, respectively, and the outer horizontal lines 

indicate the 10th and 90th percentile values. The colored areas illustrate the estimated probability density 

function of the corresponding datasets. PLI: phase lag index; FR: frontal cortex; FT: frontotemporal 

regions; PA: parietal cortex; SM: somatomotor cortex; VI: visual cortex; AUC: area under the curve; 

HC: healthy control; SZ: schizophrenia. 

Supplementary Table 1. Effect of cost on static network measures. The upper row contains p-values 

from the Friedman tests, while the lower row contains Kendall’s coefficient of concordance (W) values. 

W=1 indicates perfect agreement among subjects. HC: healthy control; SZ: schizophrenia. 

Connectivity Strength Clustering Coefficient Global Efficiency 

HC SZ HC SZ HC SZ 

static 
p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

W 1 1 0.8627 0.7658 0.9985 0.9991 

5.2 Mean, variance and excursions from median 

Similarly to the SL-based analysis, the mean of dynamic network measures proved to be more sensitive 

than their static counterparts. In that, mean D, C and E was found higher in the SZ group at all cost 

values, except 𝜇 
𝐶  at K=15% (Supplementary Figure 2). Similarly as in the case of static FC analysis,

mean values of all three network measures increased significantly with increasing the cost 

(Supplementary Table 2). Variance of D, C and E were found significantly higher in the SZ group at 

almost all values of K (Supplementary Figure 2). Increasing the cost resulted in an increase of 𝜎2
 

𝐷

but a decrease of 𝜎2
 

𝐶 , while it has barely any effect on 𝜎2
 

𝐸  (Supplementary Table 2). On the other 

hand, while showing a tendency similar to that of 𝜎2 with higher values in the SZ group, no significant

difference in EfM was found at any value of K. Unsurprisingly, the AUC analysis indicated strong 

group-level differences, with significantly higher mean, variance and EfM values for all three network 

measures in SZ (Supplementary Figure 3). The AUC analysis also identified significantly higher 𝜇 
𝐷

and 𝜇 
𝐷  in the SZ group in WPLI-reconstructed dynamic networks.
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Supplementary Figure 2. Cost-dependent results of the mean, variance and excursions from median 

analysis of network measures. Mean, variance and excursions of median (EFM) values of the three 

network measures are plotted as functions of the cost. Black markers indicate significant group level 

difference (p<0.05, corrected). *: two-sample t-test; +: Mann-Whitney U test; HC: healthy control; SZ: 

schizophrenia. 
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Supplementary Table 2. Effect of cost on the mean (μ), variance (σ2) and excursions from median

(EfM) of dynamic network theoretical measures. For each index, the upper rows contain p-values from 

Friedman tests, while the lower rows contain Kendall’s coefficient of concordance (W) values. W=1 

indicates perfect agreement among subjects. HC: healthy control; SZ: schizophrenia. 

Connectivity Strength Clustering Coefficient Global Efficiency 

HC SZ HC SZ HC SZ 

𝜇 
p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

W 1 1 1 1 1 1 

𝜎2
p <0.0001 <0.0001 <0.0001 <0.0001 0.0027 0.0068 

W 1 1 1 0.9881 0.2225 0.1987 

EfM 
p <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 <0.0001 

W 0.9874 1 0.9968 0.9847 0.5401 0.3724 
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Supplementary Figure 3. Results of the area-under-the-curve analysis regarding the mean, variance 

and excursions from median (EFM) of dynamic network measures. Black markers indicate significant 

group level differences with one marker in case of p<0.05 and two markers in case of p<0.0001. *: 

two-sample t-test; +: Mann-Whitney U test; HC: healthy control; SZ: schizophrenia. 
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5.3 Multifractal measures and entropy 

When using PLI as the connectivity estimator, yet again most network measures time series (NMTS) 

qualified as true multifractals (Supplementary Table 3). The only exception is the slightly lower 

fraction of NMTSs that passed the phase randomization test (67.86%), however this result in itself only 

implicates that the observed multifractality (as verified in 100% of the time series when compared to 

generated monofractal signals) could not be fully explained by the presence of nonlinearity in the 

process. Dynamic networks reconstructed from WPLI analysis expressed similarly strong 

multifractality in their dynamics (Supplementary Table 4). 

Supplementary Table 3. Testing results for true multifractality in PLI-derived dynamic networks. 

MF: multifractality; PhaseRan: phase randomization; D: connectivity strength; C: clustering 

coefficient; E: global efficiency; PLI: Phase Lag Index. 

Spectrum Shuffling True MF PhaseRan 

D 97.32% 100% 100% 67.86% 

C 96.43% 100% 100% 100% 

E 97.32% 100% 100% 94.64% 

Supplementary Table 4. Testing results for true multifractality in WPLI-derived dynamic networks. 

MF: multifractality; PhaseRan: phase randomization; D: connectivity strength; C: clustering 

coefficient; E: global efficiency; WPLI: Weighted Phase Lag Index 

Spectrum Shuffling True MF PhaseRan 

D 96.43% 100% 100% 90.63% 

C 96.88% 100% 100% 100% 

E 98.21% 100% 100% 100% 

Cost-dependent analysis did not reveal any significant difference in hmax, as well as only 
EFWHM was found significantly higher in the SZ group at K=15 and 50% (Supplementary Figure 4). 

On the other hand, DmPE and CmPE were found significantly reduced in SZ subjects for all cost values, 

while the same difference in EmPE was found significant only at K=50% (Supplementary Figure 4). 

Increasing K resulted in significant increase of Ehmax, a decrease in Chmax while it has no effect on Dhmax 

(Supplementary Table 5). Similar effects were observed regarding FWHM with the exception that 
EFWHM decreased with increasing the cost. Comparable to results acquired from SL-based analysis, 

the cost had the opposite effect on mPE of all network measures when compared to hmax 

(Supplementary Figure 4, Supplementary Table 5). Finally, nearly identical group level differences 

to those of the SL-based analysis were found when comparing the AUC values of multifractal and 

entropy measures (Supplementary Figure 5). 
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Supplementary Figure 4. Cost-dependent results of multifractal and entropy analysis of network 

measures. Multifractal measures (hmax and FWHM) and modified permutation entropy (mPE) of all 

three network measures are plotted as functions of the cost. Black markers indicate significant group 

level difference (p<0.05, corrected). *: two-sample t-test; +: Mann-Whitney U test; HC: healthy 

control; SZ: schizophrenia. 
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Supplementary Table 5. Effect of cost on the multifractal measures (hmax and FWHM) and modified 

permutation entropy (mPE) of dynamic network theoretical measures. For each index, the upper rows 

contain p-values from Friedman tests, while the lower rows contain Kendall’s coefficient of 

concordance (W) values. W=1 indicates perfect agreement among subjects. HC: healthy control; SZ: 

schizophrenia. 

Connectivity Strength Clustering Coefficient Global Efficiency 

HC SZ HC SZ HC SZ 

hmax 
p 0.8477 0.4215 <0.0001 <0.0001 <0.0001 <0.0001 

W 0.0345 0.0721 0.5189 0.5833 0.9905 0.9847 

FWHM 
p 0.3347 0.5342 <0.0001 <0.0001 0.0001 <0.0001 

W 0.0814 0.0617 0.9227 0.9269 0.8673 0.8610 

mPE 
p 0.0880 0.0385 <0.0001 <0.0001 <0.0001 <0.0001 

W 0.1266 0.1511 0.7255 0.7620 0.7925 0.8582 
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Supplementary Figure 5. Results of the area-under-the-curve analysis regarding multifractal and 

entropy-related properties of dynamic network measures. Asterisk marks significant group difference 

identified by two-sample t-test with one marker indicating p<0.05 and two markers indicating 

p<0.0001. HC: healthy control; SZ: schizophrenia. hmax: Hölder exponent at the peak of the multifractal 

spectrum; FWHM: full width at half maximum. 
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5.4 Classification and most important features 

Train and test performance metrics of the classifier using AUC features derived from PLI-based 

analysis are shown in Supplementary Table 5. The classifier reached a performance comparable to 

that trained on SL-derived features. Surrogate datasets yielded estimates close to chance level (50%), 

as expected, indicating a significantly better performance of the classifier in all metrics. The cumulative 

Gini importance was the highest for DmPE, C𝜎2, E𝜇 and Cstat (Supplementary Table 6).

Supplementary Table 6. Performance report of the random forest classifier classifiers using PLI-

derived features. ACC: accuracy; SEN: sensitivity; SPE: specificity; PPV: positive predictive value; 

NPV: negative predictive value; ROC-AUC: area under the receiver operator characteristic curve. CI: 

confidence interval; PLI: Phase Lag Index. 

Test performance 

ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) ROC-AUC (%) 

train 92.03 98.35 85.71 87.44 98.16 97.84 

test 89.29 92.86 85.71 85.71 82.14 85.71 

CI 
46.93 

(68.83) 

47.57 

(75.87) 

46.29 

(76.35) 

33.89 

(57.44) 

33.25 

(58.86) 

45.82 

(79.02) 
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Supplementary Table 7. Feature importances extracted from the random forest classifier using PLI-

derived indices. For each index, the network measure it was calculated from is indicated in the left 

superscript. Static network measures are indicated by the subscript ’stat’ following their abbreviation. 

D: connectivity strength, C: clustering coefficient; E: global efficiency; stat: static; 𝜇: mean; 𝜎2:

variance; EfM: excursions from median; hmax: Hölder exponent at the peak of the multifractal spectrum; 

FWHM: full width at half maximum; mPE: modified permutation entropy; PLI: Phase Lag Index. 

index feature importance 

1 DmPE 3.7696 

2 C𝜎2 2.5557 

3 E𝜇 2.1993 

4 Cstat 1.2970 

5 D𝜇 1.0521 

6 Chmax 1.0439 

7 Ehmax 0.8477 

8 EEfM 0.3316 

9 Dhmax 0.3048 

10 C𝜇 0.2087 

11 CEfM 0.1995 

12 Dstat 0.1057 

13 E𝜎2 0.0789 

14 DFWHM 0.0056 

15 CmPE 0.0 

16 CFWHM 0.0 

17 EmPE 0.0 

18 Estat 0.0 

19 DEfM 0.0 

20 D𝜎2 0.0 

21 EFWHM 0.0 

In contrast to the lack of significant between-group differences, random forest classification 

was able to reach a surprisingly good performance even on AUC features derived from the WPLI-

based analysis. In fact, model performance was comparable with those using SL- and PLI-derived 

features (Supplementary Table 8). The cumulative Gini importance indicated Ehmax, 
CEfM and Dstat 

as most important features (Supplementary Table 9). 
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Supplementary Table 8. Performance report of the random forest classifier classifiers using WPLI-

derived features. ACC: accuracy; SEN: sensitivity; SPE: specificity; PPV: positive predictive value; 

NPV: negative predictive value; ROC-AUC: area under the receiver operator characteristic curve. CI: 

confidence interval. WPLI: Weighted Phase Lag Index. 

Test performance 

ACC (%) SEN (%) SPE (%) PPV (%) NPV (%) ROC-AUC (%) 

train 96.15 93.96 98.35 98.47 94.52 99.83 

test 89.29 92.86 85.71 85.71 82.14 89.29 

CI 
46.36 

(70.07) 

48.57 

(79.14) 

50.14 

(79.49) 

36.74 

(60.54) 

36.85 

(61.18) 

49.64 

(79.69) 
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Supplementary Table 9. Feature importances extracted from the random forest classifier using 

WPLI-derived indices. For each index, the network measure it was calculated from is indicated in the 

left superscript. Static network measures are indicated by the subscript ’stat’ following their 

abbreviation. D: connectivity strength, C: clustering coefficient; E: global efficiency; stat: static; 𝜇: 

mean; 𝜎2: variance; EfM: excursions from median; hmax: Hölder exponent at the peak of the multifractal

spectrum; FWHM: full width at half maximum; mPE: modified permutation entropy; WPLI: Weighted 

Phase Lag Index. 

index feature importance 

1 Ehmax 2.2952 

2 CEfM 1.6963 

3 Dstat 1.5646 

4 C𝜇 1.4681 

5 Chmax 1.2571 

6 E𝜎2 1.0985 

7 D𝜇 0.8020 

8 Cstat 0.7334 

9 E𝜇 0.5931 

10 D𝜎2 0.3994 

11 EFWHM 0.3552 

12 DEfM 0.3287 

13 CmPE 0.2834 

14 CFWHM 0.2536 

15 DFWHM 0.2026 

16 Dhmax 0.1969 

17 Estat 0.2895 

18 EmPE 0.1408 

19 EEfM 0.0761 

20 DmPE 0.0455 

21 C𝜎2 0.3110 
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6 Classifier details 

6.1 Model 1 

Class: Random forest classifier 

Functional connectivity estimator: Synchronization likelihood 

Parameters: bootstrap=True, class_weight=None, criterion='gini', max_depth=5, max_features=3, 

max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, 

min_samples_leaf=2, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=5, 

n_jobs=-1, oob_score=False, random_state=41904, verbose=0, warm_start=False 

6.2 Model 2 

Class: Random forest classifier 

Functional connectivity estimator: Phase Lag Index 

Parameters: bootstrap=True, class_weight=None, criterion='gini', max_depth=2, max_features=2, 

max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, 

min_samples_leaf=2, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=5, 

n_jobs=-1, oob_score=False, random_state=845, verbose=0, warm_start=False 

6.3 Model 3 

Class: Random forest classifier 

Functional connectivity estimator: Weighted Phase Lag Index 

Parameters: bootstrap=True, class_weight=None, criterion='gini', max_depth=3, 

max_features=’auto’, max_leaf_nodes=None, min_impurity_decrease=0.0, 

min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, 

min_weight_fraction_leaf=0.0, n_estimators=7, n_jobs=-1, oob_score=False, random_state=1706, 

verbose=0, warm_start=False 
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7 Definitions of classifier performance measures 

During classification, a subject from the SZ group were treated as a ’positive example’, while a healthy 

control subject as a ’negative sample’. A correctly classified positive example is referred to as a true 

positive (TP), while a correctly classified negative example is referred to as a true negative (TN). 

Conversely, a positive example incorrectly classified as negative is referred to as a false negative (FN), 

while a negative example incorrectly classified as positive is referred to as false positive (FP). All 

performance measures can be expressed using these four terms (Fawcett, 2006). 

Accuracy (ACC): the proportion of correctly classified examples, expressed as 

𝐴𝐶𝐶 =
∑ 𝑇𝑃 + ∑ 𝑇𝑁

∑ 𝑇𝑃 + ∑ 𝑇𝑁 + ∑ 𝐹𝑃 + ∑ 𝐹𝑁
(3) 

Sensitivity (SEN): also called the true positive rate (or recall), defined as the proportion of true 

positives to all positive examples, expressed as 

𝑆𝐸𝑁 =
∑ 𝑇𝑃

∑ 𝑇𝑃 + ∑ 𝐹𝑁
(4) 

Specificity (SPE): also called the true negative rate, defined as the proportion of true negatives to all 

negative examples, expressed as 

𝑆𝑃𝐸 =
∑ 𝑇𝑁

∑ 𝑇𝑁 + ∑ 𝐹𝑃
(5) 

Positive predictive value (PPV): also called precision, defined as the proportion of true positives to 

all examples classified as positive, expressed as: 

𝑃𝑃𝑉 =
∑ 𝑇𝑃

∑ 𝑇𝑃 + ∑ 𝐹𝑃
(6) 

Negative predictive value (NPV): the proportion of true negatives to all examples classified as 

negative, expressed as: 

𝑁𝑃𝑉 =
∑ 𝑇𝑁

∑ 𝑇𝑁 + ∑ 𝐹𝑁
(7) 

False positive rate (FPR): also called fall-out, defined as the proportion of false positives to all 

negative examples, and is expressed as: 
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𝐹𝑃𝑅 =
∑ 𝐹𝑃

∑ 𝐹𝑃 + ∑ 𝑇𝑁
(8) 

Receiver operator characteristic (ROC): the ROC curve is acquired by plotting the sensitivity (true 

positive rate) against the false positive rate at various threshold values and is most frequently 

characterized by its area under the curve (AUC). In case of perfect classification it takes its maximal 

possible value of 1, while in case of a dummy classifier and a balanced sample (where the proportion 

of positive and negative examples is 50-50%) it takes a value close to its expected value of 0.5. 
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