

Supplementary Material

Supplementary Tables

Supplementary Table S1. Strains and plasmids used in this study

Strains	Genotype	Source			
E233S	$\Delta pyrEF\Delta lacS$	Deng <i>et al.</i> , 2009 (Deng et al., 2009)			
$\Delta dpo2$	$\Delta pyrEF\Delta lacS\Delta dpo2$	This work			
$\Delta dpo3$	$\Delta pyrEF\Delta lacS\Delta dpo3$	This work			
$\Delta dpo4$	$\Delta pyrEF\Delta lacS\Delta dpo4$	This work			
Plasmids	Features				
pSeSD	A <i>Sulfolobus-E.coli</i> shuttle vector carrying an expression cassette controlled under a synthetic strong promoter ParaS-SD	Peng <i>et al.</i> , 2012 (Peng et al., 2012)			
pSeSD_dpo2	pSeSD carrying Dpo2 encoding sequence	This work			
pSe-Rp	The plasmid contains a DNA fragment of two tandem copies of CRISPR repeat sequences for the construction of the artificial mini-CRISPR array	Peng <i>et al.</i> , 2015 (Peng et al., 2015)			
pAC- <i>dpo1</i> , -2, - 3, -4	pSe-Rp carrying a spacer matching to the protospacer in the coding region of <i>dpo1</i> , -2, -3, -4 gene correspondingly in genome	This work			
pGE- <i>dpo1</i> , -2, - 3, -4	The genome-editing plasmid derived from pAC- <i>dpo1</i> , -2, -3, -4 respectively, with the corresponding	This work			

Supplementary Material

donor DNA inserted between SphI and	
XholI	

Supplementary Table S2. Oligos used in this study

Oligos	Sequence			
Construction of <i>dpo</i> mutant				
KO <i>dpo1</i> Larm-F	tttgcatgcCATAGAATTGAATAAGGAGCTTCTGG			
KOdpo1SOE-R	CCTCCTGTGAAAGGAATATCAAATAAGGTAAGTTGCT			
KOdpolSOE-F	TTGATATTCCTTTCACAGGAGGAAAAGGGAATAATTAA			
KO <i>dpo1</i> Rarm- R	tttctcgagTGGAAATATGAACCATACAGTGTATC			
KO <i>dpol</i> spf	aagTTATTGGGTATATCAAAAGTTAAGGTGGATACGCTAATAT			
KO <i>dpol</i> spr	agcATATTAGCGTATCCACCTTAACTTTTGATATACCCAATAA			
KO <i>dpo2</i> F	AGGATTTAGGGGATTGGA			
KOdpo2 R	TGGAGGGGAACCATCGCC			
<i>dpo2</i> inner F	CCCACTTCACGAGATAGCCT			
<i>dpo2</i> inner R	CCTCCCTTATCCGCCATCAT			
KOdpo2Larm-F	tttgcatgcGGAAGAACACAGCCATCATACA			
KOdpo2SOE-R	CCCTCCTCAAGTACTCCTCCATTTCTCGCATTCCTC			
KOdpo2SOE-F	GAAATGGAGGAGTACTTGAGGAGGGTTTATGAC			
KO <i>dpo2</i> Rarm- R	tttctcgagACCTCCATCATCACTTACTTTA			
KOdpo2spf	aagTTGATTGTAAAATACAACATTTCAGCTGAAACCGTTGACG			
KO <i>dpo2</i> spr	agcCGTCAACGGTTTCAGCTGAAATGTTGTATTTTACAATCAA			
KOdpo3 F	CTAGTGGCCGATGATACGCT			

KO <i>dpo3</i> R	TGAGAAAGTTCAAGTGCGAGA
<i>dpo3</i> inner F	TTCTTTCGCACTATGAGGGT
<i>dpo3</i> inner R	AGATCATCCATGCTTTCGTCT
KO <i>dpo3</i> Larm-F	tttgcatgcCATGCATGCTCCGAGAGTATCTTTATCCCT
KO <i>dpo3</i> SOE-R	ATTTCTTCTTAGAACTAACCAAATGACTGGCT
KO <i>dpo3</i> SOE-F	TCATTTGGTTAGTTCTAAGAAGAAATAATGTCAGTAAA
KO <i>dpo3</i> Rarm- R	tttctcgagCCGCTCGAGTTAGACAGGATTGAGACTGC
KO <i>dpo3</i> spf	aagCTAATTTACATTTGGAGCATTGATGATGAAGGTAACAGTT
KO <i>dpo3</i> spr	agcAACTGTTACCTTCATCATCAATGCTCCAAATGTAAATTAG
KO <i>dpo4</i> F	CTCTCTCCCAGCGAATCAG
KO <i>dpo4</i> R	ATGGGCAAGAAAGGGGCAAA
<i>dpo4</i> inner F	ATGGCAAAGCCAAATGGGAT
<i>dpo4</i> inner R	TGGCTTTAGCCTCACCAATTA
KO <i>dpo4</i> Larm-F	tttgcatgcCATGCATGCTATCACTTCTCCTCCACCTT
KO <i>dpo4</i> SOE-R	CTAAACCTTACTCCGCGTAAAAGTAGTCAAAATCAACGA
KOdpo4SOE-F	GACTACTTTTACGCGGAGTAAGGTTTAGCAAATTCATC
KO <i>dpo4</i> Rarm- R	tttetcgagCCGCTCGAGCATGTGATGAAGACCTTTGG
KO <i>dpo4</i> spf	aagATAGTTGAAGCAAAGAAAATTTTACCTAATGCAGTTTACT
KO <i>dpo4</i> spr	agcAGTAAACTGCATTAGGTAAAATTTTCTTTGCTTCAACTAT

Overexpression of <i>dpo2</i>				
dpo2-NdeI-F	TCCACTcatatgCGAGAAATGGAGGAGTACGT			
dpo2-SalI-R	ATTTgtcgacACATCTAGAGATCACCTCT			
Others				
Sisapt-F	TACCCGGATCATATAACCCAG			
Sisapt-R	AAGGTTTTTGTGGTTGGTGAT			

Dpo2 Homologue	Species	Size (aa)	Identity to SisDpo2 (%)	Similarity to SisDpo2 (%)		
Sis	Sulfolobus islandicus Rey15A	555	100			
Sso	Sulfolobus solfataricus P2	561	91	96		
Sto	Sulfolobus tokodaii str. 7	540	68	81		
Sac	Sulfolobus acidocaldarius DSM639	582	582 54			
Ahos	Acidianus hospitalis W1	73				
Mese	Metallosphaera sedula DSM5348	562	71			
Mecu	Metallosphaera cuprina AR-4	562	53	73		
Ffo	Fervidicoccus fontis Kam940	541	31	52		
Calag	Caldisphaera lagunensis DSM 15908	624 29		46		
Aca	Aeropyrum camini SY1	636	30	47		
Ape	Aeropyrum pernix K1	633 32		48		
Tagg	Thermosphaera aggregans DSM 11486	636	51			
Tcal	Thermogladius calderae 1633	644	45			
Smar	Staphylothermus marinus M1	648	55			
Shell	Staphylothermus hellenicus DSM 12710	648	36	59		

Supplementary Table S3. Dpo2 homologues in crenarchaeal species

Supplementary Figures

Supplementary Figure S1. Effect of NQO on cell growth and expression of DNA polymerases in *S. islandicus*

(A) Growth curve of the wild-type strain of *S. islandicus* E233S in the presence of NQO. NQO was added to exponetial growth cultures (A600nm=0.2) at the concentration of 0, 1, 2 and 3 μ M, and incubated for 24 h during which cell samples were taken for monitoring their A600 values.

(B) Expression profiles of the four DNA polymerases revealed by western analysis. 10 μ g of total cell extracts of NQO-treated samples (1, 2, 3 μ M) and the untreated reference (CK) were used for the immunoblotting analysis using antibodies against each DNA polymerase. PCNA1, which has a constant expression upon DNA damage, serves as a loading control.

(C) Quantification of relative amounts of Dpo2 in samples taken from cultures incubated with different concentrations of NQO.

Supplementary Figure S2. Cell growth and western blotting analysis of *dpo2*-overexpression strain and its reference

(A) Exponentially growing cultures (A600nm=0.2) were incubated with 0, 1, 2 and 3 μ M NQO for 24 hours. The A600nm value of each culture at 0h and 24 hour after NQO addition was plotted. Three independent experiments were performed with the standard deviation shown in the error bar. Unpaired t test was performed for each group of data, with p values indicated in the graph. (B) Cell samples were taken at 6 hours after NQO addition and cell extracts were obtained by sonication and centrifugation. 10 μ g of cell extracts of NQO-treated and control (CK) samples were used for immunoblotting analysis using Dpo2 and Penta-His Tag antibodies. To estimate the relative amounts of overexpressed Dpo2, samples of overexpression strain were diluted by 20 times individually and used for the western blot analysis. PCNA1 serves as an internal control. 1N, 2N and 3N refers to the sample incubated with 1, 2 and 3 μ M NQO respectively.

Supplementary Figure S3. Expression of each DNA polymerase in different strains upon NQO treatment

Exponentially growing cultures (A600nm=0.2) were incubated with 2 μ M NQO for 6 hours and samples were taken for the preparation of cell extracts. Euqal amount of cell extracts (10 μ g) for each sample were used in western blotting assay using antibodies against each DNA polymerase. PCNA1 serves as an internal control.

Supplementary Figure S4. Expression of each DNA polymerase in different strains post UV irradiation

Exponentially growing cultures (A600nm=0.2) were exposed to 50 J/m² UV-C light, then, the treaed cultures were allowed to recover for 6 h under the dark condition with shaking. Cell extracts were prepared and euqal amounts of cell extracts (10 μ g) for each sample were used for the western blotting assay using antibodies against each DNA polymerase. PCNA1 serves as an internal control.

			β22		β23			
	1tgo		-			_		
		F A		• • • • •				
	Itgo	534	F. K	νгх	A <mark>D 1</mark>	DGF	FA	TIPGAD
	Sis_Dpol	649	LT	VГY	G <mark>D T</mark>	DSI	FL	L <mark>N</mark> PP
	Shell	446	ΥK	VVH	VIII	DSI	FV	Q <mark>G</mark> GD
	Smar	446	ΥK	VIH	III	DSI	FV	Q <mark>G</mark> GD
	Aca	427	YR	LIH	SLV	DSI	FI	Q <mark>P</mark> VEP.
	Ape	424	YR	VIH	SLV	DSV	Γ Ι	Q <mark>P</mark> VEP.
	Tcal	438	ΥK	VVH	AIV	DSI	Γ Ι	G <mark>G</mark> VAD.
	Tagg	428	YR	VIH	AIV	DSV	FI	Q <mark>g</mark> vas.
2	Calag	418	ΥK	VIN	FIV	DSI	FI	I <mark>P</mark> EKP.
B	Ahos	389	LE	VLH	G <mark>VI</mark>	DSI	SV	R <mark>G</mark> N
0	Mecu	394	VE	VLH	G <mark>IV</mark>	DSI	IV	R <mark>G</mark> N
ш	Mese	394	VE	VLH	G IV	DSI	VI	R <mark>G</mark> D
	Sac	407	LE	VLH	G <mark>II</mark>	DSI	IV	R <mark>G</mark> DK
	Sis	385	LK	VLH	SII	DSI	VV	K <mark>G</mark> D
	Sto	369	ΙK	VLH	G <mark>II</mark>	DSI	IV	K <mark>G</mark> D
	Sso	391	LR	VLH	G <mark>II</mark>	DSI	VV	K <mark>G</mark> D
	Ffo	413	FΝ	VLH	Y <mark>IV</mark>	DSI	FL	Q <mark>K</mark> F S K E
					*			

Supplementary Figure S5. Dpo2 homologues carry a substitution at the PolC motif

Structure-based sequence alignment of the PolC motif of Dpo2 homologues. The mutated aspartate in the PolC motif (YG<u>D</u>TDS) was indicated by the asterisk symbol. The structure of *Thermococcus gorgonarius* PolB (1tgo) was used as the template for the structure-based sequence alignment, which was performed using PROMALS3D webserver (Pei et al., 2008) and depicted using Espript 3 (Robert and Gouet, 2014). SisDpo1 harboring the canonical PolC motif was shown as the control.

Supplementary Figure S6. Sequence alignment of conserved regions of Dpo2 homologues

The structure of *Thermococcus gorgonarius* PolB (1tgo) was used as the template for the structurebased sequence alignment, which was performed using PROMALS3D webserver (Pei et al., 2008) and depicted by Espript 3 (Robert and Gouet, 2014). SisDpol belonging to PolB1 family was shown as a control. Framed sequences indicates a 12 aa sequence insertion in *Thermogladius calderae* PolB2 (Tcal).

Supplementary Figure S7. Phylogenetic tree of Dpo2 homologues

The tree was constructed using sequences of Dpo2 homologs extracted from NCBI. These sequences were first aligned using MUSCLE, then the poorly aligned regions were removed by Gblocks program (v0.91b) using the default setting. The phylogenetic tree was constructed using the trimmed sequences with the PhyML program (v3.0) and the tree was visualized by using the TreeDyn program (v198.3). Sis_Dpo1 and Sis_Dpo3 sequences are used as the outgroup.

0.2

Supplementary Figure S8. Phylogenetic tree of crenarchaeal species

Phylogenetic trees of representative crenarchaeal species were constructed using their 16S rDNA sequences retrieved from the NCBI databases. The 16S rDNA sequences were first aligned using MUSCLE program, then, poorly aligned regions were removed by Gblocks program (v0.91b) using the default setting. The phylogenetic tree was constructed using the trimmed sequences with the PhyML program (v3.0) and visualized by the TreeDyn program (v198.3). The 16s rDNA sequence of *Haloferax volcanii* DS2 was used as the outgroup.

Supplementary Figure S9. Sequence alignment of YxGG/A and PolA motif of archaeal PolB2 homologs

The structure of *Thermococcus gorgonarius* PolB (1tgo) was used as the template to conduct structure-based sequence allignments using PROMALS3D webserver (Pei et al., 2008), and the resulting data were depicted by Espript 3 (Robert and Gouet, 2014). Conserved residues are highlighted by yellow background and identical ones are in the red. Variations in the YxGG/A and PolA motifs of PolB2s from *Aeropyrum pernix K1* (Ape) and *Aeropyrum camini* SY1 are framed and indicated by red arrows.

Supplementary Figure S10. Spontaneous mutation spectra of *apt3* locus in WT and $\Delta dpo4$

Mutated bases are shown in red on the top of original ones. Single base deletions are indicated with blue "-" signs above the deleted bases, and single base insertions are indicated by green "+" signs beneath the bases immediately before the insertion positions with the inserted shown in green. Large insertions (>2bp) are shown with black triangle signs. Numbers in the bracket indicate the sample size (total number of analyzed mutants).

Supplementary Figure S11. DNA damage-induced mutation hotspots in the apt3 locus

Only mutation hotspots are shown with their locations in the *apt3* locus indicated. The mutated bases of treated and reference samples are shown on the top of and under the original ones respectively. Tandem mutations are double underlined. Single base deletions are indicated with blue "-" signs above/beneath the deleted bases, and single base insertions are indicated by green "+" signs above/beneath the bases immediately before the insertion positions with the inserted shown in green. Large insertions (>2bp) are shown with black triangle signs. Numbers in the bracket indicate the sample size (total number of analyzed mutants).

- Deng, L., Zhu, H., Chen, Z., Liang, Y.X., and She, Q. (2009). Unmarked gene deletion and hostvector system for the hyperthermophilic crenarchaeon Sulfolobus islandicus. *Extremophiles* 13(4), 735-746. doi: 10.1007/s00792-009-0254-2.
- Pei, J., Tang, M., and Grishin, N.V. (2008). PROMALS3D web server for accurate multiple protein sequence and structure alignments. *Nucleic Acids Res* 36(Web Server issue), W30-34. doi: 10.1093/nar/gkn322.
- Peng, N., Deng, L., Mei, Y., Jiang, D., Hu, Y., Awayez, M., et al. (2012). A synthetic arabinoseinducible promoter confers high levels of recombinant protein expression in hyperthermophilic archaeon Sulfolobus islandicus. *Appl Environ Microbiol* 78(16), 5630-5637. doi: 10.1128/AEM.00855-12.
- Peng, W., Feng, M., Feng, X., Liang, Y.X., and She, Q. (2015). An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference. *Nucleic Acids Res* 43(1), 406-417. doi: 10.1093/nar/gku1302.
- Robert, X., and Gouet, P. (2014). Deciphering key features in protein structures with the new ENDscript server. *Nucleic Acids Res* 42(Web Server issue), W320-324. doi: 10.1093/nar/gku316.