
Supplementary Materials

1 Analytical Solution of Cell Migration Model

Important to our analysis of cell migration is that our model of cell migration

has an analytical expression which can be compared to experimental data. We

can generate cell tracks stochastically using, (see figure 1):

Rt ∼ N(µt, σ2
r t)

Θt ∼ N(θ0, σ
2
θt) (1.1)

with associated probability density functions, gR(r) and gΘ(θ). The distance

travelled in the x-direction in time t, Xt, is given by Xt = RtHt, where Ht =

cos(Θt). Notice that Rt and Ht are independent, so that the probability density

function is is fXt(r, θ) = gRt(r)fHt(θ).

The pdf of Ht is given by considering

P (a ≤ H ≤ b) = P (∪i {θ ∈ arccosk([a, b])})

=
∑
k

P (θ ∈ arccosk([a, b])) (1.2)

=
∑
k

∫
arccosk([a,b]))

gΘ(u)du (1.3)

=
∑
k

∫
arccosk([a,b]))

gΘ(u)du (1.4)

=
∑
k

∫ b

a

gΘ(arccosk(s))

∣∣∣∣ dds arccosk(s)

∣∣∣∣ds (1.5)

=

∫ b

a

∑
k

gΘ(arccosk(s))

∣∣∣∣ dds arccosk(s)

∣∣∣∣ds (1.6)

where the sum is over the subscript k, such that for a given h, θk = arccosk(h)

∀ k. It follows immediately that the pdf for HΘ is

fH =
∑
i

gΘ(arccosk(h)

∣∣∣∣ dds arccosk(h)

∣∣∣∣ (1.7)
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Note that the set of solutions, T to h = cos(θ), is given by:

T = {arccos(h) + 2πk,− arccos(h) + 2πk | k ∈ Z} (1.8)

where arccos(h) gives solutions in usual range of principle values [0, 2π]. We

include solutions outside of the range [−π, π] to allow for the possibility that

a cell could turn through more than 2π in a time step (although, our aim was

to record cell position at a frequency high enough to avoid that occurrence).

Hence,

fH(h) =
∑
k

1

(1− h2)1/2
(gΘ(θ + 2πk) + gΘ(−θ + 2πk) (1.9)

Firstly note that fH is integrable on [-1,1], which we will demonstrate below.

Also note that as t → ∞, fH(h) → 1
π(1−h2)1/2

, which is the distribution of

H = cos(Φ), where Φ is uniformly distributed. To see this note that:

∞∑
k=−∞

(gΘ(θ + 2πk) + gΘ(−θ + 2πk)) =

1

(2πσ2
θt)

1/2

∞∑
k=−∞

e
− (θ0+θ+2πk)2

2σ2
θ
t + e

− (θ0−θ+2πk)2

2σ2
θ
t (1.10)

If the summation is rewritten as
∑∞
k=−∞ w(k) then as t→∞, w(k+1)−w(k)→

0. Consider w, as a function of a continuous variable k′, then as t→∞∫ k+1/2

k−1/2

w(k′)dk′ → w(k)

∫ k+1/2

k−1/2

dk′ = w(k) (1.11)

Therefore, if x = 2πk′,

∞∑
k=−∞

w(k)→ 1

2π

∫ ∞
−∞

w(x)dx = 2σθt
1/2 (2π)1/2

2π
(1.12)

Leading immediately to the required result. The pdf for Xt is easily found by

multiplying the pdf for Rt (which is the standard Guassian pdf) by the pdf for

Ht as above. However, this gives fXt as a function of r and θ. To find fXt as a
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function of one variable, x (the distance traveled in the x-direction), consider

P (x < x′ < x+ δx) = P (−1 < h < 1)P (r < r′ < x/h+ δx/h) (1.13)

=

∫ 1

−1

∫ x/h+δx/h

x/h

fX(r′, h)dhdr′ (1.14)

= δx

∫ 1

−1

fXt(x/h, h)

h
dh (1.15)

Hence,

fXt(x) =

∫ 1

−1

fXt(x/h, h)

h
dh (1.16)

This gives the correct pdf, which we validated against stochastic simulations of

our migration model.

2 Integration

The integration in equation 2.18 has to be done with care due to the singu-

larities at h = 0 and h = ±1. Although, for x >> 0, we found the following

approximation satisfactory:

fXt(x) ≈ 2

N

N∑
k=0

fXt(x/hk, hk)

hk
(2.17)

where hk = −1+2k/N . However, for x ≈ 0 the singularities have to be removed.

To do this the integral is split:

fXt(x) =

∫ 1

−1

fXt(x/h, h)

h
dh (2.18)

=

∫ −ε
−1

. . .+

∫ 0

−ε
· · ·+

∫ ε

0

. . .+

∫ 1

ε

. . . (2.19)

= I1 + I2 + I3 + I4 (2.20)
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For I1 and I4, the substitution h = cosφ removes the singularity at h = ±1. For

I3 substitute z = ln(h), and for I2 substitute z = − ln(−h), which both remove

the singularity at zero. We take ε = 1/2.

3 Comparison with Experimental Data

For general experimental data, tracks are recorded as a sequence of time points,

whereas fXt(x) is a pdf for the distance traveled in x for a set time. Hence, in

order to analyze all the data available to us, we analyze the distance traveled

in time ∆t, which in this case we took to be the time between image frames

(5 minutes). Equation 2.18 assumes that θ0 is known and constant. Hence,

to compare experimental data to this pdf, tracks are broken up into pairs of

steps and a ’rigid-body’ rotation is applied such that each step in the data set

is initiated at (r0, θ0) = (0, 0), (see main text). To compare with the model, a

histogram is plotted from the set of rotated steps with bin centers xi, bin widths

wi, and resulting density D(xi). To quantify the model fit to the experimental

data we compare the area of the histogram bars with the corresponding area

under the pdf. If fXt(x) is approximately linear in the range xi ∈ Bi = [xi −
wi/2, xi + wi/2], then ∆si = (fXt(xi)−D(xi))

2
is a good metric for the fit.

However, in regions where fXt(x) is highly non-linear (for example: f ′Xt(x −
wi/2) >> 0 and f ′Xt(x+ wi/2) << 0), ∆si is a poor metric of the fit. In these

cases the area under the pdf, A(xi), is calculated (by computation of fXt at

additional points) and ∆sj = (A(xj)−D(xj)wj)
2

is used. The regions where

this is deemed necessary are found by visual inspection of the experimental data.

In the case of random cell migration we found this usually to be around x = 0.

4 Fitting Procedure

To find the best possible fit, we minimize ∆S =
∑
i ∆si. To minimize ∆S we

used simulated annealing, a Monte-Carlo based method. Following an initializa-

tion of the problem, new parameter sets Pk+1 are generated by adding gaussian

noise to the existing set, Pk. If ∆Sk+1 < ∆Sk then the new parameters are

accepted. Otherwise they are only accepted with probability e(∆Sk−∆Sk+1)/Tk ,

where Tk is the ‘temperature’ of the simulation. The ‘annealing’ occurs due to

a predefined cooling regime. Here we use geometric cooling so that Tk+1 = αTk
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where α < 1. Given the stochastic nature of the procedure. a good fit is not

guaranteed. Hence we repeat this fitting. The length of the fitting procedure is

4000 steps, the cooling lasts until step 3500, after which the selected parameters

are recorded. This is repeated 200 times. The resulting parameters are plotted

as histograms (fig. 4, supp. figs 3-4).

5 Confidence Interval Calculation

To find the best fit we sought to minimize ∆S, which is a function of a parameter

set p = (µr1 , σr1 , σθ1 , µr2 , σr2 , σθ2), and the fractional weight of time spent in

state 1, α, and of course is also dependent on the data D. Because they need

to be treated slightly differently in what follows α and p are seperated. So,

formally we sought

[p̂, α̂] = arg min
(p,α)

∆S(p, α;D) (5.21)

so p̂ and α̂ are the values of p and α which minimize ∆S. To profile our

confidence in the estimates for α̂ we simply calculated

∆S(p̂, α), α ∈ [0, 1] (5.22)

Then we can capture values of α which satisfy ∆S(p̂, α) ≤ ∆S(p̂, α̂)+ε, where ε

is some threshold for ‘accepting’ a parameter value to be defined and determined

below.

To treat the other parameters we do something similar, but add an additional

step. For each element in the parameter set p we fix it at a given value and

re-optimize the other elements in p. Define qi = p/pi. Then we seek

∆S(q̂i, pi, α̂) = min
(qi,α̂)

∆S(qi, pi, α̂;D) (5.23)

Then, similarly to above, we can look for the values of pi which satisfy ∆S(q̂i, pi, α̂) ≤
∆S(p̂, α̂) + ε.
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Note that we treat α and p distinctly because when α = 0, (or α = 1) the

model results are independent of (µr1 , σr1 , σθ1) (or (µr2 , σr2 , σθ2)), therefore if

you do this simultaneously you introduce degeneracy in this approach. In some

circumstances this may be desirable, but in this case we found fixing α or p to

be more informative1 However, in what follows, any statements we make about

the confidence in the parameter values should be interpreted as conditional on

the best fit values α̂ in the case of the members of p, and p̂ in the case of α.

To set the threshold ε we want to include parameter values that we could con-

clude were the best fit if we repeat the experiment. Therefore we need an

estimate of the variability of the data. To do this we resample the data using

bootstrap sampling and score the new sample against the actual dataset. Since

our data is a collection of steps the cell took at a given time-step, we resample

at this level. However, it is also possible to keep entire cell tracks intact in

the resampling process by simply redrawing what cells are included in the new

dataset. In either case we build a distribution for values of ∆S which we could

plausibly see upon resampling (or, to rephrase, if we had a perfect model that

exactly matches the full data set, how would that model score against repeats

of the experiment?). In either case (resampling steps, or whole tracks) we select

ε such that 80% of the observed values fall below ∆S(p̂, α̂) + ε. Then the pa-

rameter values that are predicted to lead to model fits in this range define the

10th to 90th confidence interval in each parameter.

1The reason why this is more informative is that otherwise this approach does not take in
to account how the relationship between the parameters is constrained. For example, suppose
our model is simply f = αp+ (1− α)q, and that our data is 1 ≤ f ≤ 10 then if α ∈ [0, 1] our
bounds for both p and q are [1,10] but these ranges do not convey that the model constrains
the possible combinations for α, p, and q, even though for any one parameter the range is not
constrained.
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