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1 Supplementary Information
All SI figures are provided at the end of SI text, with each figure on a new page.

Proof of contextual integration
To keep the proof of context integration self-contained, we reproduce some of the material already introduced
at the beginning of the Results section here.

Neuronal code

We assume a simple neural code for each excitatory neuron: the steady-state firing rate of the neuron maps
monotonically to the probability of the feature that the neuron codes for in the presented image (similar to
codes assumed in previous studies [1–3]). We have

fnk,x = g(p(Fnk |ix)) (S1)

where fnk,x represents the firing rate of a neuron coding for feature Fk at location n in response to image x,
p(Fnk |ix) represents the probability of feature Fk being present at location n in image x and g is a monotonic
function. For simplicity, we assume a linear mapping between the probability of feature presence and firing
rate (g(y) = y), as the qualitative conclusions are not dependent on this choice.

We subdivide the image into multiple sections corresponding to the sizes of classical receptive fields and
refer to each section as a patch. We define the classical receptive field response of the neuron (with g(y) = y)
as

cnk,x = p(Fnk |inx) (S2)

where inx denotes the image patch at location n. We require that the sum of probabilities of all features in
a patch is one, for every image, thereby implying a normalization of classical receptive field responses in a
spatial region. ∑

k

cnk,x = 1 ∀n, x (S3)

Proof

We subdivide the image into N patches corresponding to the sizes of classical receptive fields.

p(Fnk |ix) = p(Fnk |i1x, ..., iNx ) (S4)

For clarity, we first look at the integration of information from two patches, where patch i1x is in the classical
RF for the neuron considered and patch i2x is in its extra classical RF. We start by considering how the code
for feature j at location 1 (F 1

j ) within patch i1x is influenced by the patch i2x.
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For these two patches, assuming that the set of features represents a complete basis, (S4) can be expanded
as:

p(F 1
j |i1x, i2x) =

∑
k

p(F 1
j |i1x, i2x, F 2

k ) p(F 2
k |i1x, i2x) (S5)

where the sum is over the k neurons with classical receptive fields in patch i2x. We make the following
simplifying assumptions:

1. The only information that neuron 1 has about patch i2x comes from the k neurons with classical receptive
fields in that patch, so that,

p(F 1
j |i1x, i2x, F 2

k ) ≈ p(F 1
j |i1x, F 2

k ). (S6)

Using Bayes rule, we can write

p(F 1
j |i1x, F 2

k ) =
p(F 1

j |i1x) p(F 2
k |i1x, F 1

j )

p(F 2
k |i1x)

. (S7)

2. Note that the term p(F 2
k |i1x) represents the extraclassical RF influence of patch i1x onto the neuron

coding for feature F 2
k . The term p(F 2

k |i1x, F 1
j ) represents the joint influence of patch i1x and the activity

of neuron of interest (in this case, the neuron coding for featureF 1
j ) onto the neuron coding for feature

F 2
k . In this study we will consider only the first order dependence and exclude higher-order dependencies

by making the following set of simplifying assumptions for these terms:

p(F 2
k |i1x, F 1

j ) ≈ p(F 2
k |F 1

j ) (S8)

p(F 2
k |i1x) ≈ p(F 2

k )

p(F 2
k |i1x, i2x) ≈ p(F 2

k |i2x)

Using these assumptions, we can rewrite (S7) as,

p(F 1
j |i1x, F 2

k ) =
p(F 1

j |i1x) p(F 2
k ∩ F 1

j )

p(F 1
j ) p(F 2

k )
(S9)

Substituting (S6) in (S5) and using (S9), we can write,

p(F 1
j |i1x, i2x) =

∑
k

p(F 1
j |i1x, F 2

k ) p(F 2
k |i1x, i2x)

= p(F 1
j |i1x)

∑
k

(
1 +

p(F 1
j ∩ F 2

k )− p(F 1
j ) p(F 2

k )

p(F 1
j ) p(F 2

k )

)
p(F 2

k |i2x) (S10)

Given the normalization condition in (S3), the re-arrangement of terms in (S10) allows us to split the
contributions as a sum of classical (feed-forward) and extra-classical (lateral) terms so that

p(F 1
j |i1x, i2x) = p(F 1

j |i1x)

(
1 +

∑
k

p(F 1
j ∩ F 2

k )− p(F 1
j ) p(F 2

k )

p(F 1
j ) p(F 2

k )
p(F 2

k |i2x)

)
(S11)

3. When going beyond two patches to N patches, we use a third approximation: the patches considered
do not overlap and each of these patches provides independent information to the neuron coding for
feature Fj in patch 1. The probability of feature Fj in patch 1 becomes:

p(F 1
j |ix) = p(F 1

j |i1x, ..., iNx )

= p(F 1
j |i1x)

N∏
n 6=1

(
1 +

∑
k

p(F 1
j ∩ Fnk )− p(F 1

j ) p(Fnk )

p(F 1
j ) p(Fnk )

p(Fnk |inx)

)
(S12)
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If the contributions from each of the patches is sufficiently small, the higher order terms in (S12) can
be ignored, so that

p(F 1
j |ix) = p(F 1

j |i1x)

1 +
∑
k

N∑
n 6=1

p(F 1
j ∩ Fnk )− p(F 1

j ) p(Fnk )

p(F 1
j ) p(Fnk )

p(Fnk |inx)

 (S13)

Network interpretation

Using the notation:

W 1n
jk =

p(F 1
j ∩ Fnk )− p(F 1

j ) p(Fnk )

p(F 1
j ) p(Fnk )

(S14)

(S12) becomes:

p(F 1
j |ix) = p(F 1

j |i1x)

N∏
n6=1

(
1 +

∑
k

W 1n
jk p(Fnk |inx)

)
(S15)

and (S13) becomes:

p(F 1
j |ix) = p(F 1

j |i1x)

1 +
∑
k

N∑
n 6=1

W 1n
jk p(Fnk |inx)

 (S16)

It follows that the activity of the neurons representing feature F 1
j in image x is

f1j,x = g
(
p(F 1

j |ix)
)

= g

 1

N 1
x

c1j,x

N∏
n 6=1

(
1 +

∑
k

W 1n
jk g−1

(
cnk,x

)) (S17)

where N 1
x represents a normalization coefficient for patch 1 in image x (the implementation of which will be

described in the next section) and cnk,x = g(p(Fnk |inx)) represents the classical receptive field response of the
neuron.

Using a simple neural code mapping g(y) = y in which the firing rates represent linearly the probability,
(S17) becomes

f1j,x =
1

N 1
x

c1j,x

N∏
n 6=1

(
1 +

∑
k

W 1n
jk c

n
k,x

)
(S18)

and (S13) becomes,

f1j,x =
1

N 1
x

c1j,x

1 +
∑
k

N∑
n6=1

W 1n
jk cnk,x

 (S19)

(S18) (equivalently (S17)) can be interpreted in terms of a network as follows. Let us suppose that the
term W 1n

jk can be interpreted as a synaptic weight. Then (S18) implies that the firing rate can be obtained
by summing the appropriately weighted contributions from k neurons in each patch n via lateral connections
and multiplying the contributions from all N patches with the classical RF response c1j,x. We have thus shown
how a network of neurons can directly implement Bayes rule to integrate information from the surround.

In general, the formula for the synaptic weight is

Wmn
jk =

p(Fmj ∩ Fnk )

p(Fmj )p(Fnk )
− 1 (S20)
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Please note that the organism cannot measure the probabilities themselves in (S20) directly. But they can
be estimated from observations of the environment given our defined neuronal code. An estimate can be

Wmn
jk =

〈
fmj,xf

n
k,x

〉
x〈

fmj,x

〉
x

〈
fnk,x

〉
x

− 1 (S21)

when x spans a representative set of natural scenes. Such a set of weights can be realized using a Hebbian-like
learning in an unsupervised manner. However, the firing rate f jm,x is dependent on Wmn

jk , which can lead
to problems of stability. Therefore we use the best estimate the organism can have about probabilities of
feature presence (e.g. p(Fn1k1 ) without a recursive relation on the weights. Thus we computed these weights
using the classical receptive field responses of the cells so that,

Wmn
jk =

〈
cmj,xc

n
k,x

〉
x〈

cmj,x

〉
x

〈
cnk,x

〉
x

− 1 (S22)

Normalization

As described in Results, our model incorporates two types of normalization that arise from requiring that
probabilities sum to one. The first corresponds to the requirement that the classical RF responses to an
image patch satisfy, ∑

k

cnk,x = 1 ∀n, x (S23)

This normalization is carried out over a spatial region the size of the classical RF. It can be implemented in
a neuronal network in which a set of neurons responsible for normalization i) have a divisive effect on the
pyramidal neurons, ii) are patch specific (have a classical RF of similar size to the pyramidal neurons), iii) are
untuned, iv) inhibit equally all the pyramidal neurons in their image patch and v) receive inputs equal to the
average of the inputs of the pyramidal neurons in the patch. These properties match well with those of the
pyramidal targeting inter-neurons (PTI) category [4] and correspond quite well to the parvalbumin-expressing
inter-neurons [5].

The second normalization leads to the requirement that the firing rates of neurons obtained after
incorporating the contributions from the lateral connections satisfy,∑

k

fnk,x = 1 ∀n, x (S24)

We can condense the effect of all the lateral connections into one term by defining,

Lmj,x =

N∏
n 6=1

(
1 +

∑
k

Wmn
jk fnk,x

)
(S25)

The equation for the firing rate then becomes

fnk,x =
1

Nn
x

cnk,x L
n
k,x (S26)

with
Nn
x =

∑
k

cnk,xL
n
k,x, (S27)

ensuring that (S24) is satisfied. This normalization is carried out over a spatial region extending out to 4
times the classical RF size, encompassing the spatial region corresponding to the extra classical RF. This
normalization arises in our network effectively as a consequence of network interactions between Pyr, PV and
SOM interneurons.
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Distributions of model synaptic weights
The computation of weights using (S22) produces both positive and negative weights, with an approximately
balanced average. This balance is in addition to the local normalization implemented in (S3). This can be
seen in Figure S1a which shows the distribution of all (18× 18× 43× 43) synaptic weights predicted by our
model in the 4-dimensional array W (k1, k2,∆x,∆y). The synaptic weight distribution follows a heavy-tailed
distribution with a bias towards excitatory connections, that has been reported experimentally in cortex [6]
and proposed to have various computational implications [7–9].

Figure S1b also shows the distribution of synaptic weights at each spatial location on 7× 7 gridpoints
that are separated by the size of the classical receptive field. Again, it can be seen that the distributions are
centered around 0 at most spatial locations, indicating a balance between excitatory and inhibitory weights in
our model. This is also evident from the left and right panels in Figure S2, which show the average synaptic
weight across all pairs of 18 × 18 filters in each spatial location on the full 43 × 43 and the reduced 7 × 7
spatial grid (same grid as in Figure S1b) respectively.

(a) (b)

Figure S1: Distributions of synaptic weights. Left: Histogram of all computed synaptic weights for
parameterized data filters showing a long-tailed distribution with a bias towards excitatory connections (mean
µ = −0.02 and standard deviation σ = 0.19). Inset shows a zoomed-in version to make the long-tailed nature
more clear. Right: Histograms of synaptic weights at each spatial location on 7 × 7 gridpoints that are
separated by the size of the classical receptive field. Note the vertical axes ranges are different across the
rows.

Comparison with other models
Here we discuss some comparisons of our model with other normative and dynamical models relating
contextual modulation of neuronal responses and lateral connectivity.

Dynamical models

A well-established dynamical model of lateral connectivity in V1 [10] uses lateral connections between neurons
that are determined by the correlation between their classical receptive fields. This model allows us to define
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(a) (b)

Figure S2: Spatial profile of the average of synaptic weights across all pairs of parameterized data filters
showing balance between excitation and inhibition on average. Left: Mean on 43 x 43 grid. Right: Mean of
synaptic weights at each spatial location on the same 7 × 7 grid as in Figure S1b.

synaptic weights between neurons i and j as,

Wij = sign (c (i, j)) c (i, j)
npow npow even

Wij = c (i, j)
npow npow odd (S28)

where c(i, j) is the raw correlation between filters representing neurons i and j, sign(x) = 1 if x is positive and
-1 if x is negative and npow is a parameter that determines connectivity strength as a function of correlation.

We used npow = 6 as in the original study [10] for direct comparison. Sample synaptic weights for the
receptive field correlation model filters in all classes are shown in SI Figure (S3 top rows each panel) onto the
first (leftmost) filter obtained using this procedure are shown in SI Figure (S3 third rows in each panel).

Results obtained from this model for npow = 1 are shown in SI Figure S3 bottom row of each panel. It
can be seen that this model also produces like-to-like orientation and distance dependence of excitatory and
inhibitory connections, qualitatively similar to our model. The panels in SI Figure S4 show the orientation
and distance dependence of excitatory and inhibitory connections for the different classes of filters. We fit
Gaussian functions (black dashed lines in SI Figure S4) to the distance dependence of synaptic weights from
this model (see Methods). Please note that we were not able to find good Gaussian fits for the sharp filters
with the correlation-based model, likely due to their very sharp fall-off with distance.

We also explored comparisons with the lateral connectivity profiles that have been established in dynamical
network models of contour integration in primates [12, 13] (for brevity, we refer to these as the Li model [12]
and the Piëch model [13]). Both these models provide explicit formulae for long range connectivity kernels
between hypercolumns in primate V1 that facilitate smooth contours and suppress parallel flankers. Note
that the excitatory and inhibitory connections in these models follow the rule of co-circularity and collinearity
for the optimal connection strength at a given spatial location, in agreement with the statistics of natural
images [14]. Using these expressions, we reproduced 4-D connectivity profiles for 8 orientations (from 0 to
315 degrees in steps of 45 degrees) on a 43× 43 spatial grid, analogous to W (k1, k2,∆x,∆y) generated with
our model. Specifically, we used the same parameters and expressions as in [12] for the Li model, while the
Piëch model [13] was parameterized using the expressions,

cosfwhm(φ, φopt, φfwhm) =

{
1
2 cos

(
π
φ−φopt

φfwhm

)
+ 1

2 , |φ− φopt| < φfwhm

0, |φ− φopt| ≥ φfwhm
(S29)
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and,

Lee = Iee exp

(
−∆x2 + ∆y2

2d2σ

)
cosfwhm

(
−θ2, θ1,

π

4

)
cosfwhm

(
|θ1|+ |θ2|

2
, 0,

π

4

)
Lie = Iie exp

(
−∆x2 + ∆y2

2d2σ

)
cosfwhm

(π
2
− θ2,

π

2
− θ1,

π

4

)
cosfwhm

(
|θ1|+ |θ2|

2
,
π

2
,
π

4

)
(S30)

Lee and Lie represent the long range excitatory and inhibitory weights respectively, Iee and Iie are overall
scale factors for the weights and dσ is a parameter representing a falloff distance for the weights. θ1 and
θ2 are angles between the preferred orientations of the two neurons and the line connecting them. If θ1,2
was larger than the angle of the connecting line, we reset θ1,2 → π − θ1,2. For the Piëch model, we used
dσ = 10, Iee = 1, Iie = 1.

SI Figure S5 shows the spatial profile for synaptic weights between a pair of neurons coding for a horizontal
feature (represented by the filter in leftmost panel) for our model (second panel), the Li model (third panel)
and the Piëch model (last panel). All three models produce qualitatively similar spatial profiles of excitatory
and inhibitory weights for neurons preferring horizontal features. Additionally, SI Figure S6 shows that these
models also qualitatively capture the like-to-like connectivity and distance dependence, similar to our model.

Normative models

Our model bears close resemblance to the MGSM (mixture of Gaussian scale mixtures) model of natural
images proposed by Coen-Cagli, Dayan and Schwartz [15], which infers contextual interactions between the
RF and surround that would lead to optimal coding of images. Analogous to our model, we mapped the
effective interactions learned by their model onto a circuit and found that their model also qualitatively
reproduces the like-to-like connectivity and distance dependence of positive and negative weights.

We used the software [16] made publicly available by the authors at http://dx.doi.org/10.6080/K0JM27JZ
and obtained covariance matrices for RF interactions at four different relative spatial positions (6, 12, 18 and 24
pixels) of center and surround RFs. Other details were kept exactly the same including the number and
types of center and surround filters. We used only the covariance matrices for interactions between center
and surround RFs from their model for further analysis. Equating these with synaptic weights, we obtained
a circuit mapping by splitting them into positive (excitatory) and negative (inhibitory) weights as in our
model. Further analyses for the orientation and distance dependence of synaptic weights was carried out in
an exactly identical manner as for our model.

SI Figure S7 shows (in a matrix layout) the spatial profile of synaptic weights learned by the model between
even-phase vertical (0 deg) surround filters and even-phase center filters at four orientations corresponding
to (0, 45, 90, 135) deg for the four relative spatial positions. SI Figure S8 shows the qualitatively similar
like-to-like connectivity and distance dependence of both excitatory and inhibitory weights. Given our
mapping into excitatory and inhibitory weights, it can be seen that this model also provides a rich profile of
synaptic weights as a function of relative spatial locations and orientation preferences for pairs of neurons.
Since exact quantities depend on details of the filters used (among others), we did not pursue a more in-depth
comparison here.

Adding lateral connections to deep convolutional networks
MNIST image dataset

We trained and evaluated our models on the MNIST [18] dataset. MNIST contains grayscale images (28x28
pixels) of handwritten digits (10 classes, for the digits 0-9). MNIST contains a total of 70K images, split into
a training set (60K images) and a test set (10K images). We used 10% of the training data (6K images) for
validation.

To test the generalization of our models under noise perturbations, we added two types of noise to the
original images: additive white Gaussian noise (AWGN) and salt-and-pepper noise (SPN). The mean of the
AWGN was set to zero and the standard deviation varied in increasing levels of {0.1, 0.2, 0.3, 0.4, 0.5}. For
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Model Network architecture

CNN conv5-13 maxpool conv5-26 maxpool FC-50 FC-10 soft-max

CNNEx conv5-10 conv7-10 maxpool conv5-20 conv3-20 maxpool FC-50 FC-10 soft-max

Table 1: Model architectures used for the experiments. CNN is the baseline model without lateral connections,
and CNNEx is the model with lateral connections. The number of parameters for CNN and CNNEx were
approximately matched to ensure fair comparison of the two models. Convolutional layers are denoted as
“conv<receptive field size>-<number of channels>”. Convolutional layers in italics represent recurrent lateral
connections learned in an unsupervised manner. “maxpool” denotes max pooling using a 2x2 window and
a stride of 2. “FC” denotes fully connected layers with the given number of units. The ReLU activation
function is not shown for brevity.

the SPN, the fraction of noisy pixels varied in increasing levels of {0.1, 0.2, 0.3, 0.4, 0.5}. The addition of noise
can be viewed as a random, non-targeted adversarial attack, which changes the input image in such a way
that it will be classified incorrectly. The degree of misclassification is dependent on the noise level. Example
stimuli from each dataset (original and noisy images) are shown in Figure 6 in the Main text.

Network architecture and training

We used a simple network architecture to study the influence of lateral connections in convolutional neuronal
networks. The network consisted of two convolutional (conv) layers with the ReLU nonlinearity, each followed
by a max-pooling (maxpool) layer with a 2x2 pooling window, which effectively downsamples the input by a
factor of 2. Following the two convolutional layers are two fully-connected (FC) layers, with the final output
passed through a soft-max nonlinearity for the ten classes in each dataset. The model architecture is shown
in Table 1.

To train our models, we used stochastic gradient descent with a learning rate of 0.01 and a momentum
value of 0.5. We used a minibatch size of 64, and trained our models for a total of ten epochs. We trained
ten different instantiations of each model using different random seeds to ensure the robustness of our results.
All experiments were performed using Pytorch (0.3.1) on a NVIDIA GTX 1080 Ti GPU.

Adding lateral connections

After the initial phase of supervised learning, we freeze the feedforward synaptic weights of the network. The
classical receptive field response of a neuron representing feature j in layer l in patch m, given image x can
be represented by the activation of a standard artificial neuron model:

cm,lj,x = φ

(
b+

∑
k

∑
n

Umnjk cn,l−1k,x

)
(S31)

where φ represents a nonlinear activation function, b represents a bias term, k represents features, n represents
locations, and Umnjk are the feedforward synaptic weights from layer l − 1 to layer l.

We then apply lateral connections within the first two convolutional layers of the network. Here, we
drop the l superscript, since the proposed lateral connections are intracortical and occur within the same
layer. The lateral connections are between neurons with the same feature (within-channel) and neurons with
different features (between-channel). The activity of a neuron representing feature j in patch m, given image
x can then be written as:

fmj,x = cmj,x

(
1 + α

∑
k

∑
n 6=m

Wmn
jk cnk,x

)
(S32)

where fmj,x represents the full response of the neuron with contributions from extra-classical receptive fields,
cmj,x represents the classical receptive field response of the neuron, α represents a hyperparameter that tunes
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the strength of the lateral connections, and Wmn
jk are the synaptic weights from surrounding neurons. The

lateral connections have a modulatory effect on the feedforward response, and setting α = 0 is equivalent to
the base model with no lateral connections.

The synaptic weights are learned in an unsupervised manner using the following rule, derived in (S22)
above:

Wmn
jk =

〈
cmj c

n
k

〉
x〈

cmj

〉
x

〈
cnk

〉
x

− 1 (S33)

where Wmn
jk is the synaptic weight between each pair (j, k) of features located at (m,n) and x spans a set of

images. We used the same set of training images originally shown to the network during supervised training
to learn the lateral connections. It is important to note that this formula differs from a Hebbian learning
rule, in that only the covariance between the feedforward responses of neurons leads to changes in the lateral
connections.

Validation and testing

Lateral connections had a spatial extent of 7x7 pixels in the first convolutional layer and 3x3 pixels in the
second convolutional layer. We do not include any self-connections, so these were all set to zero. We chose
the lateral connection hyperparameters α for each of the two convolutional layers based on a coarse grid
search over the parameter range {0.1, 0.01, 0.001, 0.0001} using the validation dataset.

We did not use lateral connections for the two fully-connected layers. We report final accuracies of each
model on the original dataset and for all levels of the two different types of noise perturbations. All final
results are averages over each of the 10 pre-trained models with different random seeds.

Phenomenology
We have shown that our model captures the distance-dependence and like-to-like nature of excitatory
connectivity reported experimentally.

We now demonstrate two simple instances of contextual modulation (specifically, surround suppression)
observed in experiments that we can reproduce using the learned lateral connections in our model.

The simplest form of surround suppression is perhaps the phenomenon of end-stopping. This refers to
the reduction in firing rate of a neuron responding to an optimally oriented bar stimulus when the bar is
extended beyond the classical RF boundary. Figure S11a shows an example neuron in our model exhibiting
the same characteristic suppression with increasing bar length. Model neurons also show another form of
surround suppression in which their response to a square-wave grating patch decreases with increasing patch
size [19, 20]. Furthermore, the optimal patch size evoking the maximum response is larger at lower contrast.
This is shown for an example model neuron in Figure S11b.

Both of these phenomena arise in the model as consequence of network interactions giving rise to a
combination of subtractive and divisive inhibition [21]. Recall that the firing rate of a neuron in the network
is related to the probability of a feature being present in the image at a given location ((S1)) and is calculated
using (S19). We already normalized the classical RF responses ((S1)). To ensure that sum of all probabilities
is still one, we implement (with g(y) = y) an additional normalization∑

k

fnk,x =
∑
k

p(Fnk |ix) = 1 ∀n, x (S34)

This is achieved by divisive normalization of activities over a spatial region extending out to 4 times the
classical receptive field size, which encompasses the spatial region corresponding to the extra-classical RF.

An intuitive justification for this additional normalization can be provided as follows. In our model,
network neurons integrate information about feature presence from surround neurons via lateral connections.
Upon receiving information from the surround neurons, each neuron updates its estimate about the probability
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of a feature being present in the image. The inclusion of this information and the subsequent normalization
leads to a reshaping of neuronal responses that manifests experimentally in the form of extra-classical RF
effects.

Divisive normalization of this nature has been proposed as a possible explanation for surround sup-
pression [22]. Other models have used variants of divisive normalization such as a weighted (as opposed
to uniform) divisive sum [23] or input-targeted divisive inhibition [24, 25] to explain extra-classical effects
including surround SI suppression. SOM neurons have been implicated in mediating surround suppression in
mouse visual cortex [19] as mentioned earlier. However, in our model, it is difficult to ascribe SOM neurons as
being solely responsible for surround suppression arising from this divisive normalization. Instead, it arises in
our model effectively as a consequence of network interactions between Pyr, PV and SOM interneurons [21].

Image Reconstruction
To explore if lateral connections might facilitate decoding of information from neuronal activity by downstream
neuronal populations, we reconstructed natural images after adding Gaussian noise (to simulate neuronal
noise) to the activities of the neurons (Figure S12b, S12c).

We constructed maps of activities for each filter, and used the inverted filters to reconstruct the original
image from all neuron activities. For a given input image x, we calculated the effective activity fn1k1,x of
neuron coding for feature Fk1 at location n1 using Eq. (S1). We convolved the activities computed using this
equation with the inverses of the filters in our basis set. Specifically, the activity fn1k1,x was convolved with the
inverse of the filter coding for feature Fk1 (obtained by flipping this filter about the horizontal and vertical
axes). The convolutions with all inverted filters were then summed together to obtain the reconstructed image.
We only use synaptic weights from relative spatial locations that are separated by the size of the classical RF,
in accordance with the assumption that surround patches provide information which is independent of the
patch in the classical RF.

To quantify reconstruction fidelity, we calculated the Pearson correlation coefficient r between the input
and reconstructed natural images. We find that the correlation coefficient is larger for reconstruction with
all lateral connections than with feedforward connections only (distribution of differences in correlations
shown in Figure S12d, mean µ = 6.35 × 10−4, standard error of mean sem = 5.95 × 10−5, ttest with
p-value p = 3.86× 10−21). Figure S12 shows an example input image (Figure S12a) and the reconstructed
images based on the activities from the classical RF alone (Figure S12b, r = 0.597) and including all lateral
connections (Figure S12c, r = 0.598) respectively. Shuffling the entries in the connectivity matrix no longer
see a significant difference between the distributions of the correlation coefficients with and without lateral
connections (SI Figure S9, mean µ = 3.02 × 10−5, standard error of mean sem = 2.58 × 10−5, ttest with
p-value p = 0.24). This shows that the specific pattern of lateral connections (and not just their presence) is
important. Although the mean of the difference between the distributions of the two correlation coefficients
is low, we note that the model does not require any supervised training, and that lateral connections are
present for only one set of features in one layer.
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(a) Data filters
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(b) Gabor filters

(c) Sharp/banded filters

Figure S3: Comparison of synaptic weights from our model (Opt wts) and the receptive field correlation
model [10] with parameter npow = 6 (CbM wts npow = 6) and npow = 1 (CbM wts npow = 1) for all (a)18
parameterized data filters, (b)16 Gabor filters and (c)16 sharp/parameterized filters. For each filter class,
the four rows represent: Top: All basis filters, generated on a 15 × 15 grid. Second: Synaptic weights
onto the target neuron representing the left-most filter in above located at position ~x1 from the neurons
representing filters k2 = (1, ..., 18) at position ~x2. Synaptic weights were calculated in each direction around
k1 using (S22). Third: Synaptic weights as in the second row, calculated using the correlation between
classical receptive fields of each pair of neurons with npow = 6 (see Methods). Bottom: Synaptic weights
calculated using the correlation between classical receptive fields of each pair of neurons with npow = 1 (see
Methods). For the last 3 rows, the axes represent distances from the center in terms of the RF size. Note
that the colorbar for the third row ranges from -0.1 to 0.1.
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(a) Data filters
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(b) Gabor filters
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(c) Sharp/banded filters
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Figure S4: Orientation and distance dependence of connections from the correlation-based model [10]
with parameter npow = 6 for a) parameterized data filters from mouse V1 [11], b) Gabor filters and c)
Sharp/banded filters. Sharp filters were generated with a spacing δθ = 22.5 deg as opposed to 45 deg for the
data and Gabor filters. For each filter class in a,b,c) Left top: Predicted average positive synaptic weights
from the correlation-based model as a function of difference in orientation. Left bottom: Dependence of
mean positive synaptic weights (points) on distance from RF center of target filter k1 and corresponding
Gaussian fits for the positive weights (dashed black lines). Right column: Same as in left column, for
negative synaptic weights. In all plots, red bars/lines represent positive weights and blue bars/lines represent
negative weights.

(a) Example filter (b) Our model (c) Li model (d) Piëch model
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Figure S5: Our model shows qualitatively similar spatial profile of synaptic weights as in the dynamical models
developed to explain contour integration in primates. (a) Example parameterized data filter representing a
neuron coding for horizontal features from our filter set, (b) Weights predicted by our model between pairs
of neurons represented by the filter in panel (a), (c) Corresponding weights between pairs of neurons coding
for horizontal features from the dynamical model of Li [12] and (d) analogous weights from the dynamical
model of Piëch et. al [13].
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Figure S6: Orientation and distance dependence of excitatory (red bars/lines) and inhibitory (blue bars/lines)
connections from the Piëch dynamical model [13].
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Figure S7: Spatial profile of covariances (which we identify with synaptic weights) between even-phase
center and surround filters for vertical surround filters learned by the MGSM model [17]. We use the same
representation scheme as in the original study. Black bars denote the orientation and relative position of
the RFs; bar thickness is proportional to the variance. The thickness of the red (blue) lines connecting the
center and surround bars is proportional to the positive (negative) covariance respectively (normalized by the
maximum variance among the 4 distances). Rows correspond to different relative distances between center
and surround filters ((6, 12, 18, 24 pixels) respectively from top to bottom), while columns correspond to
different orientations of the center filters ((0, 45, 90, 135 deg) respectively from left to right). The leftmost
column corresponds to their configuration ξ0.

 0  45  90

 

0

0.05

0.1

0.15

0.2

W
e
ig

h
t

 0  45  90

 

0

0.05

0.1

0.15

0.2

0 3 6 9 12

Distance from k1 (in degrees)

-0.2

0

0.2

0.4

W
e

ig
h

t

Mean pos wts

Mean neg wts

Figure S8: Orientation and distance dependence of covariances/weights from the MGSM model for even
phase center and surround filters [15]. Left and middle panels: Predicted average positive and negative
synaptic weights respectively, as as function of difference in orientation tuning. Rightmost panel Mean
covariances (synaptic weights) as a function of distance from center filter. Similar results hold for odd phase
filters (not shown here).
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Figure S9: Distribution of difference in Pearson correlation coefficients computed with shuffled lateral
connections and only feedforward connections for the same test set of 200 natural images as in the main text
(mean µ = 3.02× 10−5, standard error of mean sem = 2.58× 10−5, ttest with p-value p = 0.24)

Figure S10: Example lateral connections learned on the MNIST dataset. The first row shows filters for the
first convolutional layer learned in a supervised manner. The second row shows lateral connections from each
filter onto the first filter in each row learned in an unsupervised manner. The learned filters were 5x5 and the
optimal lateral connections were 7x7.

(a) (b)

Figure S11: Model neurons exhibit surround suppression and RF expansion. a) Response of a neuron in
our network model to a bar of increasing length that is consistent with end stopping behavior observed
in experiments. b) Response of a model neuron as a function of stimulus size for a grating stimulus with
different contrasts (represented by the different colored lines). In accordance with physiology, the neuron
shows suppression with increasing stimulus size and increase in optimal stimulus size for lower contrasts. The
small black arrows represent the maxima of the tuning curves at the different contrasts, with the four highest
contrasts all having their maxima at the same stimulus size.
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(a) Input image
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(b) Recon feedforward (FF)
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Figure S12: Image reconstruction from noisy representations. Inclusion of lateral connections leads to higher
reconstruction/decoding fidelity for natural images. (a) Input natural image. (b) Input image reconstructed
from noisy feedforward activities alone. (c) Input image reconstructed from combining noisy feedforward
activities with contributions from lateral connections. The value of the Pearson correlation coefficient between
input and reconstructed image is specified on top of the respective figures. (d) Distribution of difference in
correlation coefficients computed with all lateral connections and without lateral connections for a test set of
200 natural images from the BSDS dataset (mean µ = 6.35×10−4, standard error of mean sem = 5.95×10−5,
ttest with p-value p = 3.86× 10−21)
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