

Supplementary Material

Table S1. Primer sequences.

Primer	Sequence 5'-3'	Purpose
MdDAM1-Fq	TCAAGCGTGGGTACGTTGCTTC	qRT-PCR
MdDAM1-Rq	GATGACCTGAGCGATAAAGTTGGC	qRT-PCR and genotyping of transgenic plants
<i>MdDAM4</i> -Fq	CATACTGGTGGGGAAAAATCG	qRT-PCR
MdDAM4-Rq	CTCAGCTTGCGGGTCTTATC	qRT-PCR
MdEF1alpha_F	TCAAGCGTGGGTACGTTGCTTC	qRT-PCR
MdEF1alpha_R	GATGACCTGAGCGATAAAGTTGGC	qRT-PCR
nptII_F	ACAAGATGGATTGCACGCAGG	Genotyping of transgenic trees
nptII_R	AACTCGTCAAGAAGGCGATAG	Genotyping of transgenic trees
tOCS_R	ATCATGCGATCTAGGCGTC	Genotyping of transgenic trees
virG_F	GCCGGGGCGAGACCATAG	Genotyping of transgenic trees
_virG_R	CGCACGCGCAAGGCAACC	Genotyping of transgenic trees

Table S2. Fold Changes of the 53 differentially expressed genes in line P35S:MdDAM1#1 and their corresponding level of expression in 'Golden delicious' during a bud dormancy time course

			log2F	C in 'Golden de	licious' normalize	ed to "October" v	alues							
Gene ID	log2FC in P35S: <i>MdDAM1</i> #1 compared to NT control	D=Down-regulated; U=Up-regulated	November	December	January	February	March	Gene description	Base Mean	log2Fold Change	lfcSE	stat	p-value	p-adjusted value
MDP0000013331	3.102008678	U	5.323777361	5.219265464	5.132224509	2.382071306	5.122451642	MADS-box TF (MdAP1)	37.93058	3.102009	0.422284	7.345787	2.05E-13	1.20936E-10
MDP0000306273	-1.765324523	D	-4.039082471	-8.411557551	-5.081813402	-4.077032721	-3.914831834	Cytochrome P450	127.8228	-1.76532	0.435069	-4.05758	4.96E-05	0.002414223
MDP0000232313	-2.028923988	D	0.007427254	-0.991325717	-3.104317329	-7.041121229	-4.74071452	MADS-box TF (MdDAM4)	102.4041	-2.02892	0.234514	-8.65163	5.08E-18	6.75369E-15
MDP0000154764	-3.574346057	D	0.442054783	1.07493231	0.283823052	-3.628397812	-5.866732565	ERF TF	76.98169	-3.57435	0.423111	-8.44777	2.97E-17	3.35142E-14
MDP0000517262	-2.174799841	D	2.725017536	2.89907733	1.590991199	-0.477453471	-0.450648799	AP2 TF	107.3594	-1.09719	0.278619	-3.93794	8.22E-05	0.003514481
MDP0000142134	-1.371959521	D	0.885393104	1.878934016	1.387006718	0.730400012	-0.945293083	Beta-amylase	418.1697	-1.37196	0.166457	-8.24214	1.69E-16	1.70286E-13
MDP0000197219	-1.320494194	D	1.646206286	2.865225196	1.896792402	0.554264209	-0.118793867	bZip TF	243.4806	-1.32049	0.249784	-5.28655	1.25E-07	1.77202E-05
MDP0000165880	-1.359287916	D	1.090650763	2.645518221	2.745179792	0.581787466	-1.192573437	ERF TF	181.0693	-1.35929	0.201182	-6.75651	1.41E-11	5.48431E-09
MDP0000149950	-2.329176978	D	2.035986436	3.152300132	3.080024204	2.036100625	-1.194778901	Beta-amylase	171.1249	-2.56044	0.279437	-9.16287	5.05E-20	8.55607E-17
MDP0000218882	-2.076243815	D	2.608407537	2.408170486	2.486722227	1.873075336	-0.256698457	Cellulose synthase-like	106.0868	-2.07624	0.498984	-4.16094	3.17E-05	0.00167449
MDP0000130030	-2.305458588	D	2.231309487	2.916064311	2.362873672	1.159869709	-0.656154546	Isoflavone 2'-hydroxylase-like	35.18403	-2.30546	0.467564	-4.93079	8.19E-07	8.84208E-05
MDP0000547069	-1.055181541	D	1.777410171	2.057836188	1.49467537	-0.858322594	-2.193400201	Glycoside hydrolase 17	314.2396	-1.05518	0.209225	-5.04329	4.58E-07	5.30961E-05
MDP0000252855	-1.043430114	D	1.13305786	1.072721136	0.736229376	-0.637396175	-1.037033923	Endo-beta-mannanase	216.0798	-1.04343	0.289367	-3.6059	0.000311	0.009264854
MDP0000867709	-1.247196782	D	0.694345511	-0.322923738	0.291576483	0.185218238	-0.776991646	Cytochrome P450	434.9515	-1.2472	0.155632	-8.01377	1.11E-15	9.8655E-13
MDP0000271354	1.936128804	U	0.347576809	0.303761663	-0.265744914	1.895238107	-0.89192327	Oxygen oxidoreductase	68.95418	1.936129	0.39853	4.858182	1.18E-06	0.000117669
MDP0000147201	-1.345055444	D	0.587634219	0.811897925	1.338263964	1.404522944	-0.051528816	Glycoside Hydrolase 17	44.9735	-1.32307	0.35982	-3.67702	0.000236	0.007590104
MDP0000707539	-1.628383451	D	-0.338049421	0.148465037	0.367685763	0.770688765	0.658012873	WRKY TF	44.64627	-1.62838	0.448463	-3.63103	0.000282	0.008634265
MDP0000324398	2.127427854	U	0.616135408	0.034562742	0.048585632	1.398324732	1.614345852	MdIAA6	37.33274	2.127428	0.444985	4,780899	1.75E-06	0.00016373
MDP0000655623	1.335121018	U	-0.094125008	-0.577521039	0.061809461	0.762454064	1.492695989	No apical meristem (NAM) TF	41.93428	1.335121	0.368629	3.621857	0.000292	0.008900814
MDP0000259294	-2.422074935	P	-0.724518138	-1.334792067	-2.172188419	-3.466670797	-4.941138902	MADS-box TF (MdDAM2)	112.6455	-2.42207	0.234916	-10.3104	6.33E-25	2.35599E-21
MDP0000241650	-1.052397594	D	-0.841600326	-1.226951883	-3.044196769	-1.923599425	-3.115033118	ERFTF	197.6707	-1.0524	0.19117	-5.50503	3.69E-08	5.82943E-06
MDP0000690168	-4.903849779	D	-1.807653632	-3.574704992	-2.541159049	-3.165751151	-4.018894702	No apical meristem (NAM) TF	110.5939	-4.90385	1.137845	-4.30977	1.63E-05	0.001019609
MDP0000270602	-2.156593915	D	-3.388673248	-3.283569314	-1.875339737	-3.324889771	-3.750827026	3'.5'-hvdroxvlase	101.5539	-2.15659	0.346884	-6.21704	5.07E-10	1.33832E-07
MDP0000389795	-1.131347002	D	-2.443717436	-2.582504459	-2.242040503	-2.931616208	-4.003158918	Cytochrome P450	888.8723	-1.13135	0.199803	-5.66233	1.49E-08	2.67418E-06
MDP0000910006	-2.34829143	D	-3.34883594	-4.93302134	-3.34693843	-2.719046885	-2.226485811	Cytochrome P450	57.51566	-2.34829	0.384325	-6.11017	9.95E-10	2.43878E-07
MDP0000578301	-1.459017174	D	-1.310229829	-2.280640454	-2.851255867	-2.891971868	-1.402629005	WRKY Family Protein	88,48401	-1.45902	0.329133	-4.43292	9.3E-06	0.000652115
MDP0000141889	-1.380175295	D	-1.947680916	-2.408882289	-2.630593672	-3.002086054	-1.289968716	Methionine-tRNA ligase	61.92002	-1.38018	0.379629	-3.63559	0.000277	0.008530013
MDP0000753736	-1.512239083	D	-3.007757943	-3.943915646	-2.279345682	-1.938831751	-1.201866181	MdIAA122	65.38263	-1.51224	0.342544	-4.41473	1.01E-05	0.000691185
MDP0000292868	-1.811121443	D	-2.953326503	-3.110207197	-2.726705207	-1.108773467	-1.78001353	Cvtochrome P450	44.07092	-1.57627	0.387996	-4.06258	4.85E-05	0.002378614
MDP0000183534	-1.302731934	D	-2.243759948	-2.249209535	-2.342569496	-1.579905161	-1.897664167	Zinc finger TF	99.92978	-1.30273	0.352931	-3.69118	0.000223	0.007293178
MDP0000266003	1.50319907	U	-0.844407507	-5.408951138	-1.231631753	-0.656397599	0.283498996	Fructose-bisphosphate aldolase	47.49853	1.503199	0.411233	3.65535	0.000257	0.008106958
MDP0000191851	1.008989601	U	0.572189116	-2.865071024	-1.505574819	-2.954217557	-0.207871749	Chorismate mutase	88.67534	1.00899	0.275978	3.656056	0.000256	0.008091534
MDP0000827821	-1.180624206	D	-1.931172766	-1.260113384	-1.017789606	-1.1115674	-0.851993582	NF-YA TF	132.8057	-1.18062	0.27845	-4.23999	2.24E-05	0.001284873
MDP0000231993	-2.665595949	D	-1.717597147	-2.295361437	-1.244964068	-0.004026756	-0.723762313	WRKY TF	58.11666	-2.6656	0.498378	-5.34854	8.87E-08	1.30021E-05
MDP0000464704	-1.646477394	D	-1.157628935	-1.247657156	-0.596736464	-2.373154482	-2.088648847	ERF TF	72.46021	-1.64648	0.332563	-4.95088	7.39E-07	8.16553E-05
MDP0000834642	-1.165073996	D	-1.214282665	-1.414913186	-0.281169537	-1.167032022	-1.702733755	bZip TF	103.3053	-1.16507	0.304648	-3.82432	0.000131	0.005004377
MDP0000426372	-1.414807605	D	-1.633041024	-0.864100318	-1.139067074	-2.108664718	-2.144396104	Dof TF	189.3233	-1.41481	0.212346	-6.66276	2.69E-11	9.62466E-09
MDP0000143173	-1.154786705	D	-2.235910208	-0.595539268	-1.101857781	-1.27128824	-1.828455658	TALE family protein	506.8575	-1.15479	0.307094	-3.76037	0.00017	0.006043064
MDP0000560179	1,349486767	U	0.349763136	-0.684554066	-0.44055133	-1.579331271	0.669154972	Chorismate mutase	101,7293	1.349487	0.247617	5,449891	5.04E-08	7.72543E-06
MDP0000162509	-2 567049596	D	0.064475533	-0.531875798	-1 297254999	-0 756306464	-1 199042086	Glycoside hydrolase 3	64 17803	-2 56705	0 422768	-6 072	1 26F-09	3 01624E-07
MDP0000120881	-1.898132971	 	-0 375173922	-0 245653905	-0.093083013	-0 354164847	-1 425216763	No apical meristem (NAM) TE	83 05418	-1 89813	0.500578	-3 79188	0.00015	0.005530176
MDP0000321920	1 171056965	U	-0.659820129	-0.055235414	-0 140245638	-0 782139467	-0 175959053	ABC transporter	137 251	1 171057	0.20213	4 008689	6 11E-05	0.00282507
MDP0000151003	1.080454306	5	0.414526276	0.1/3300658	0.5106733	0.778776715	1 267013010	Cutochrome p450	164 4502	1 02045	0.23213	4.000003	2 205 00	6 095205 07
MDP0000171003	-1.909404090		-0.414320270	1 022251609	1 020647127	1 160471166	2 02127420		104.4392	1.30343	0.330230	-3.91085	3.200-03	0.98339E=07
MDP0000176320	1.004000091	U	-3.140700393	-1.932331008	-1.920047137	1.156471155	0.742206245	DZIF IF	40.30070	1.534555	0.38/2/9	3.902349	7.42E-05	0.003237134
MDD00000006440	1.096243896		-1.20001/248	-2.409/01998	-1./3/106963	-0.056776161	0.7 13390245		82.623	1.098244	0.30428	3.609314	0.000307	0.003363310
MDP0000286448	1.124304427	<u> </u>	-1.492120471	-2.112/142/7	-2.515688929	-0.770997792	1.028942584	ORC6-like protein	86.75472	1.124304	0.304471	3.692644	0.000222	0.007267316
WDP0000237499	1.250000187	U	-2.894779743	-4.331110302	-4.725014272	-5.704418021	0.071164547	MIAA1U7	109.5031	1.2566	0.31972	3.93031	8.48E-05	0.003603083
MDP0000311765	-2.0108648	D	-6.10911244	-6.85/269148	-4.671908917	-1.346/2/795	-0.361391551	Aylogiucan:xylogiucosyl transferase	114.3166	-2.01086	0.413523	-4.86276	1.16E-06	0.000115596
MDP0000199273	-1.204240417	D	-4.161101355	-4.716180565	-4.134476381	-2.080775132	-0.089402194	Glycoside hydrolase 9	298.7596	-1.20424	0.193216	-6.23261	4.59E-10	1.22047E-07
MDP0000321215	1.072584438	U	-2.75037237	-3.678874159	-2.912148022	-0.597493537	1.86017383	Replication factor-a protein 1	188.0246	1.072584	0.242664	4.420047	9.87E-06	0.000680744
MDP0000248100	1.713224259	U	-2.005826279	-4.815899039	-2.746572609	-0.777840906	1.256983429	DNA repair protein	35.17381	1.713224	0.468556	3.656391	0.000256	0.008088056
MDP0000131617	1.013233752	U	-3.04172421	-3.956660686	-3.805042828	-1.047892226	0.944045674	Pol II	183.4405	1.013234	0.251191	4.033715	5.49E-05	0.002614998
MDP0000613174	1.130680656	U	-2.665347219	-4.138882759	-4.399481132	-1.720746076	0.815811048	SINE-1 like	355.2206	1.130681	0.283825	3.983728	6.78E-05	0.003045075

Figure S1. Environmental parameters during the apple bud dormancy time course experiment.

Temperatures in °C and day lengths in hours (h), indicated by a red and a blue line, respectively, were recorded each month from 2011 to 2019 at the orchard and the mean value plotted. Months are indicated by abbreviations. Buds from the cultivars 'Golden Delicious', 'Anna', and 'Dorsett Golden' were harvested at six time points from October to March as indicated by vertical arrows. The date of full bloom in 2019 is also indicated for each cultivar.

MdDAM1_'Golden_delicious' MdDAM1_'Dorsett_Golden' MdDAM1=`Anna'

MdDAM1_'Golden_delicious' MdDAM1_'Dorsett_Golden' MdDAM1-'Anna'

MdDAM1_'Golden_delicious' MdDAM1_'Dorsett_Golden' MdDAM1-'Anna'

MdDAM1_'Golden_delicious' MdDAM1_'Dorsett_Golden' MdDAM1-'Anna'

MdDAM1_'Golden_delicious' MdDAM1_'Dorsett_Golden' MdDAM1-`Anna'

MdDAM1_'Golden_delicious' MdDAM1_'Dorsett_Golden' MdDAM1-'Anna'

CTCTTTGATTTCTCAAGCTCCAGGACCAAGGATGTGATTGCAAGGTACAA CTCTTTGATTTCTCAAGCTCCAGGACCAAGGATGTGATTGCAAGGTACAA TTCACATATCGGTGGGGAAAAATCGGATCAACCCACGATTCATCAGCTAC TTCACATATCGGTGGGGAGAAATCGGATCAACCCACGATTCATCAGCTAC TTCACATATCGGTGGGAGAAATCGGATCAACCCACGATTCATCAGCTAC

AGTTGGAGAAAGAAAACAATATCAGGCTGAGGAAGGAACTTGAGGATAAG AGTTGGAGAAAGAAAACAATATCAGGCTGAGGAAGGAACTTGAGGATAAG AGTTGGAGAAAGAAAACAATATCAGGCTGAGGAAGGAACTTGAGGATAAG

AGTTGCAAGTTGAGGCAGATGAAGGGTGTGGACCTTGAAGACTTGGATCT AGTTGCAAGTTGAGGCAGATGAAGGGTGTGGACCTTGAAGACTTGGATCT AGTTGCAAGTTGAGGCAGATGAAGGGTGTGGACCTTGAAGACTTGGATCT

TGATTCAAACTAAGGAAGAAAAGATTATGAGTGAGGTTATGGCACTTGAG TGATTCAAACTAAGGAAGAAAAGATTATGAGTGAGGTTATGGCACTTGAG TGATTCAAACTAAGGAAGAAAAGATTATGAGTGAGGTTATGGCACTTGAG

GGTGATGTATCCCAGAGGAGATATCGGACCGGAGGCCATCCTGGAGTTGG

AATGTCACCACCTGCTCCAACAGCTCTCTTTCCCTTGAAGATGATTGCTC AATGTCACCACCTGCTCCAACAGCTCTCTTTCCCTTGAAGATGATTGCTC AATGTCACCACCTGCTCCAACAGCTCTCTTTCCCTTGAAGATGATTGCTC

.icious' CGACATCTTGTCTCTCAAACTGGGGTGA >lden' CGACATCTTGTCTCTCAAACTGGGGTGA CGACATCTTGTCTCTCAAACTGGGGTGA Β

GCAAGGCAGGTGAC	MdDAM1 'Dorsett Golden'	MKIKIKKIDYLPAROVTFSKRRRGIFKKAGELSILCESEVAVIIFSOTGK
GCAAGGCAGGTGAC	MdDAM1-`Anna'	MKIKIKKIDYLPAROVTFSKRRRGIFKKAGELSILCESEVAVIIFSOTGK
GCAAGGCAGGTGAC	MdDAM1 'Golden delicious'	MKTKTKKTDYLPAROVTFSKRRRGTFKKAGELSTLCESEVAVITFSOTGK
*****	habitii_ coracii_actrerous	***************************************
TGGAGAGCTGTCGA		
TGGAGAGCTGTCGA		
TGGAGAGCTGTCGA	MdDAM1_'Dorsett_Golden'	LFDFSSSSTKDVIARYNSHIGGEKSDQPT IHQLQLEKENNIRLRKELEDK
*****	MdDAM1-`Anna'	LFDFSSSSTKDVIARYNSHIGGEKS <mark>DQPT<i>IHQLQLEKENNIRLRKELEDK</i></mark>
CTCAAACTGGCAAG	MdDAM1 'Golden delicious'	LFDFSSSSTKDVIARYNSHIGGEKS <mark>DQPT<i>IHQLQLEKENNIRLRKELEDK</i></mark>
CTCAAACTGGCAAG		*********************
CTCAAACTGGCAAG		
	MdDAM1 'Dorsett Golden'	SCKI.ROMKGVDI.EDI.DI.DEI.OKI.EKI.VEASI.GRVIOTKEEKIMSEVMAI.E
ATTGCAAGGIACAA	MdDAM1 - `Anna'	SCKIROMKGVDLEDIDIDELOKLEKIVEASIGRVIOTKEEKIMSEVMALE
ATTCCALCCTACAA	MdDM1 (Colden deligious)	CCKI DOMICUDI EDI DI DEI OKI EKI VER CI CDVIOWKERKIMCEVMAI E
****	MaDAMI_ GOIden_delicious	SCRERQMAGVDEEDEDEDEEQREEREVEASEGRVIQIREERIMSEVMALE
GATTCATCAGCTAC		* * * * * * * * * * * * * * * * * * * *
GATTCATCAGCTAC		
GATTCATCAGCTAC	MdDAM1_'Dorsett_Golden'	KKGAELIEA NNQLSHRMVMYPRGDIGPEAILELENLNNIGEES <mark>V</mark> TSESTT
*****	MdDAM1-`Anna'	KKGAELIEA NNQLSHRMVMYPRGDIGPEAILELENLNNIGEES <mark>V</mark> TSESTT
	MdDAM1 'Golden delicious'	<i>KKGAELIEA</i> NNQLSHRMVMYPRGDIGPEAILELENLNNIGEES <mark>M</mark> TSESTT
AACTTGAGGATAAG		***************************************
AACTTGAGGATAAG		
AACTTGAGGATAAG	MdDAM1 /Dorsett Golden/	NUTTOSNESI SI FODOSDI I SI KI C-
*****	MdDAM1_ Dorsect_Gorden	NUTICONSCIENCEDITICINIC
	MODAMI Anna	NVIICSNSSLSLEDDCSDILSLALG=
GAAGACTTGGATCT	MaDAMI Golden_delicious,	NALLC2N22F2FFDDC2D1F2FVFG-
GAAGACTTGGATCT		**************
GAAGACTTGGATCT		

Figure S2. Single nucleotide polymorphisms detected in MdDAM1 sequence of low-chill cultivars.

The nucleotide (A) and amino acid (B) sequences of *MdDAM1* from 'Golden Delicious' was aligned to those of the low-chilling cultivars 'Dorsett Golden' and 'Anna'. The single nucleotide polymorphisms (SNPs) in (A) are highlighted in blue. The M (green) to V (blue) amino acid mutation at position 194 is indicated. The MADS domain (Interpro domain IPR002100) is highlighted in gray and the K-box domain indicated in bold characters.

Figure S3. Molecular characterization of the 35S: MdDAM1 transgenic lines.

Schematic representation of the pP35S:*MdDAM1* construct. The sequences of the primers shown are indicated in Table S2. The BamHI restriction site used to digest the genomic DNA for the Southern blot analysis is indicated (A). End-point PCR amplification of different regions of pP35S:*MdDAM1* construct in the transgenic lines 35S:MdDAM1#1-4 and the non-transformed control (NT control). The plasmid was used as a control for PCR amplification (B). Southern blot analysis using a *nptll* probe. The base pair (bp) ladder is indicated on the left (C).

	1												130
MdDAM1		AT	GAAGATCAAG	ATAAAAAAGA	TCGACTACTT	GCCGGCAAGG	CAGGTGACCT	TCTCAAAGAG	GAGAAGGGGG	ATTTTCAAGA	AAGCTGGAGA	GCTGTCGATT	CTGTGTGAAT
MdDAM4	ATGGTGAAAA	GGATGAATGA	GAAGAT T AAG	ATCAGGAGGA	TCGACTACTT	GCCGGCAAGG	CAGGTGACCT	TCTCAAAGAG	GAGAAGAGGG	ATTTTCAAGA	AAGCTGAAGA	GCTGTCGATT	CTGTGTGAAT
Consensus		aa	GAAGATCAAG	ATaAaaAaGA	TCGACTACTT	GCCGGCAAGG	CAGGTGACCT	TCTCAAAGAG	GAGAAGaGGG	ATTTTCAAGA	AAGCTGaAGA	GCTGTCGATT	CTGTGTGAAT
	131												260
MdDAM1	CTGAAGTTGC	TGTTATCATC	TTTTCTCAAA	CTGGCAAGCT	CTTTGATTTC	TCAAGCTCCA	GCACCAAGGA	TGTGATTGCA	AGGTACAATT	CACATATCGG	TGGGGAAAAA	TCGGATCAAC	CCACGATTCA
MdDAM4	CTGAAGTTGC	TGTTATCATC	TTTTCTCAAA	CTGGCAAGCT	CTTTGATTAC	TCAAGCACCA	GTACCAAGGA	TGTGATTGCA	AGGTACAAAT	CACATACTGG	TGGGGAAAAA	TCGGATCAAA	TCACGCTTCA
Consensus	CTGAAGTTGC	TGTTATCATC	TTTTCTCAAA	CTGGCAAGCT	CTTTGATTaC	TCAAGCaCCA	GCACCAAGGA	TGTGATTGCA	AGGTACAAaT	CACATAccGG	TGGGGAAAAA	TCGGATCAAa	CCACGaTTCA
	261												390
MdDAM1	TCAGCTACAG	TTGGAGAAAG	AAAACAATAT	CAGGCTGAGG	AAGGAACTTG	AGGATAAGAG	TTGCAAGTTG	AGGCAGATGA	AGGGTGTGGA	CCTTGAAGAC	TTGGATCTGG	ATGAACTACA	GAAGTTAGAA
MdDAM4	CCAACTGCAG	TCGGAGAAAG	AAAACACGAT	CAGGCTGAGT	AAGGAACTTG	AGGATAAGAC	CCGCAAGCTG	AGGCATATGA	AGGGTGAGGA	CCTTCAAGAC	TTGGATCTGG	ATCAACTGAA	CAAGTTAGAA
Consensus	CCAaCTaCAG	TCGGAGAAAG	AAAACAagAT	CAGGCTGAGg	AAGGAACTTG	AGGATAAGAC	CCGCAAGCTG	AGGCAGATGA	AGGGTGaGGA	CCTTCAAGAC	TTGGATCTGG	ATCAACTaaA	CAAGTTAGAA
	201												500
MADAMI	391	AACCAACCOM	maccacement	20002222000		C300030C3C0	CACCERTATICC	CACHINGACAA		CACCHCARAC		CCA CCMA A CC	520
MdDAM1	391 AAATTGGTGG	AAGCAAGCCT	TGGCCGTGTG	ATTCAAACTA	AGGAAGAAAA	GATTATGAGT	GAGGTTATGG	CACTTGAGAA	AAAGGGAGCT	GAGCTGATAG	AAGCTAACAA	CCAGCTAAGC	520 CACAGGATGG
MdDAM1 MdDAM4	391 AAATTGGTGG AAATTGGTGG	AAGCAAGCCT AAGTAAGCAT	TGGCCGTGTG TGGCCGTGTA	АТТСАААСТА АТАААААСТА	AGGAA G AAAA AGGAAAAAAA	GATTATGAGT GATAATGAGT	GAGGTTATGG GAGATTATGG	CACTTGAGAA CACTTACGAA	AAAGGGAGCT CAAGGGAGCT	GAGCTGATAG GAGCTTATAG	AAGCTAACAA AAGCTAACAA	CCAGCTAAGC CCAACTAAAG	520 CACAGGATGG CAGAGGTTGG
MdDAM1 MdDAM4 Consensus	391 AAATTGGTGG AAATTGGTGG AAATTGGTGG	AAGCAAGCCT AAGTAAGCAT AAGCAAGCaT	TGGCCGTGTG TGGCCGTGTA TGGCCGTGTa	АТТСАААСТА АТАААААСТА АТааАААСТА	AGGAA G AAAA AGGAAAAAAA AGGAAaAAAA	GATTATGAGT GATAATGAGT GATAATGAGT	GAGGTTATGG GAGATTATGG GAGATTATGG	CACTTGAGAA CACTTACGAA CACTTaaGAA	AAAGGGAGCT CAAGGGAGCT aAAGGGAGCT	GAGCTGATAG GAGCTTATAG GAGCTGATAG	ААССТААСАА ААССТААСАА ААССТААСАА	CCAGCTAAGC CCAACTAAAG CCAACTAAac	520 CACAGGATGG CAGAGGTTGG CACAGGaTGG
MdDAM1 MdDAM4 Consensus	391 AAATTGGTGG AAATTGGTGG AAATTGGTGG	AAGCAAGCCT AAGTAAGCAT AAGcAAGCaT	TGGCCGTGTG TGGCCGTGTA TGGCCGTGTa	АТТСАААСТА АТАААААСТА АТааАААСТА	AGGAA G AAAA AGGAA A AAAA AGGAA a AAAA	GATTATGAGT GATAATGAGT GATaATGAGT	GAGGTTATGG GAGATTATGG GAGaTTATGG	CACTTGAGAA CACTTACGAA CACTTaaGAA	AAAGGGAGCT CAAGGGAGCT aAAGGGAGCT	GAGCTGATAG GAGCTTATAG GAGCTGATAG	ААGСТААСАА ААGСТААСАА ААGСТААСАА	CCAGCTAAGC CCAACTAAAG CCAaCTAAac	520 CACAGGATGG CAGAGGTTGG CAcAGGaTGG 650
MdDAM1 MdDAM4 Consensus MdDAM1	391 AAATTGGTGG AAATTGGTGG AAATTGGTGG 521 TGATGTATCC	AAGCAAGCCT AAGTAAGCAT AAGCAAGCAT	TGGCCGTGTG TGGCCGTGTA TGGCCGTGTa	АТТСАААСТА АТАААААСТА АТааАААСТА	AGGAAGAAAA AGGAAAAAAA AGGAAaAAAA	GATTATGAGT GATAATGAGT GATAATGAGT	GAGGTTATGG GAGATTATGG GAGaTTATGG	CACTTGAGAA CACTTACGAA CACTTaaGAA	AAAGGGAGCT CAAGGGAGCT aAAGGGAGCT	GAGCTGATAG GAGCTTATAG GAGCTGATAG	AAGCTAACAA AAGCTAACAA AAGCTAACAA	CCAGCTAAGC CCAACTAAAG CCAaCTAAac	520 CACAGGATGG CAGAGGTTGG CACAGGATGG 650
MdDAM1 MdDAM4 Consensus MdDAM1 MdDAM4	391 AAATTGGTGG AAATTGGTGG 521 TGATGTATCC TGATGTATCC	AAGCAAGCCT AAGTAAGCAT AAGCAAGCAT CAGAGGA	TGGCCGTGTG TGGCCGTGTA TGGCCGTGTA GATATCGGAC	ATTCAAACTA ATAAAAACTA ATaaAAACTA CGGAGGCCAT	AGGAAGAAAA AGGAAAAAAA AGGAAaAAAA CCTGGAGTTG	GATTATGAGT GATAATGAGT GATAATGAGT GAAAACCTGA	GAGGTTATGG GAGATTATGG GAGATTATGG ATAATATTGG	CACTTGAGAA CACTTACGAA CACTTAAGAA AGAAGAAAAGC	AAAGGGAGCT CAAGGGAGCT aAAGGGAGCT ATGACATCTG	GAGCTGATAG GAGCTTATAG GAGCTGATAG AATCAACCAC	AAGCTAACAA AAGCTAACAA AAGCTAACAA AAATGTCACC	CCAGCTAAGC CCAACTAAAG CCAaCTAAac ACCTGCTCCA	520 CACAGGATGG CAGAGGTTGG CACAGGATGG 650 ACAGCTCTCT GCAGTGCTCT
MdDAM1 MdDAM4 Consensus MdDAM1 MdDAM4 Consensus	391 AAATTGGTGG AAATTGGTGG AAATTGGTGG 521 TGATGTATCC TGATGTTATC TGATGTAACC	AAGCAAGCCT AAGTAAGCAT AAGCAAGCAT CAGAGGA CGCTGGAGGA	TGGCCGTGTG TGGCCGTGTA TGGCCGTGTA GATATCGGAC GATATCGAAC	ATTCAAACTA ATAAAAACTA ATaaAAACTA CGGAGGCCAT CGGCGGCGAT	AGGAAGAAAA AGGAAAAAAA AGGAAAAAAA CCTGGAGTTG CATGGAGTTG CATGGAGTTG	GATTATGAGT GATAATGAGT GATAATGAGT GAAAACCTGA GAAAACCTGA	GAGGTTATGG GAGATTATGG GAGATTATGG ATAATATTGG ATAATGTTGG ATAATGTTGG	CACTTGAGAA CACTTACGAA CACTTAAGAA AGAAGAAAGC AGAAGAAAGC AGAAGAAAGC	AAAGGGAGCT CAAGGGAGCT aAAGGGAGCT ATGACATCTG ATGACATCTG ATGACATCTG	GAGCTGATAG GAGCTTATAG GAGCTGATAG AATCAACCAC AATCAGCCAC	AAGCTAACAA AAGCTAACAA AAGCTAACAA AAATGTCACC AAATGTCACC	CCAGCTAAGC CCAACTAAAG CCAACTAAAC ACCTGCTCCA ACCTGCTCCA	520 CACAGGATGG CAGAGGTTGG CACAGGATGG 650 ACAGCTCTT GCAGTGCTCT aCAGCGCTCT
MdDAM1 MdDAM4 Consensus MdDAM1 MdDAM4 Consensus	391 AAATTGGTGG AAATTGGTGG AAATTGGTGG 521 TGATGTATCC TGATGTATCC TGATGTAACC	AAGCAAGCCT AAGTAAGCAT AAGCAAGCAT CAGAGGA CGCTGGAGGA CaGAGGA	TGGCCGTGTG TGGCCGTGTA TGGCCGTGTA GATATCGGAC GATATCGAAC GATATCGAAC	ATTCAAACTA ATAAAAACTA ATaaAAACTA CGGAGGCCAT CGGCGGCGAT CGGaGGCCAT	AGGAAGAAAA AGGAAAAAAA AGGAAAAAAA CCTGGAGTTG CATGGAGTTG CATGGAGTTG	GATTATGAGT GATAATGAGT GATAATGAGT GAAAACCTGA GAAAACCTGA GAAAACCTGA	GAGGTTATGG GAGATTATGG GAGATTATGG ATAATATTGG ATAATGTTGG ATAATATTGG	CACTTGAGAA CACTTACGAA CACTTAAGAA AGAAGAAAGC AGAAGAAAGC AGAAGAAAGC	AAAGGGAGCT CAAGGGAGCT aAAGGGAGCT ATGACATCTG ATGACATCTG ATGACATCTG	GAGCTGATAG GAGCTTATAG GAGCTGATAG AATCAACCAC AATCAACCAC AATCAACCAC	AAGCTAACAA AAGCTAACAA AAGCTAACAA AAATGTCACC AAATGTCACC AAATGTCACC	CCAGCTAAGC CCAACTAAAG CCAACTAAAC ACCTGCTCCA GCCTGCTCCA aCCTGCTCCA	520 CACAGGATGG CAGAGGTTGG CACAGGATGG 650 ACAGCTCTCT GCAGTGCTCT aCAGCgCTCT
MdDAM1 MdDAM4 Consensus MdDAM1 MdDAM4 Consensus	391 AAATTGGTGG AAATTGGTGG AAATTGGTGG 521 TGATGTATCC TGATGTATCC TGATGTAACC 651	AAGCAAGCCT AAGTAAGCAT AAGCAAGCAT CAGAGGA CGCTGGAGGA CaGAGGA	TGGCCGTGTG TGGCCGTGTA TGGCCGTGTA GATATCGGAC GATATCGAAC GATATCGAAC	ATTCAAACTA ATAAAAACTA ATaaAAACTA CGGAGGCCAT CGGCGGCGAT CGGaGGCCAT	AGGAAGAAAA AGGAAAAAAA AGGAAAAAAA CCTGGAGTTG CATGGAGTTG CATGGAGTTG	GATTATGAGT GATAATGAGT GATAATGAGT GAAAACCTGA GAAAACCTGA GAAAACCTGA 705	GAGGTTATGG GAGATTATGG GAGATTATGG ATAATATTGG ATAATGTTGG ATAATATTGG	CACTTGAGAA CACTTACGAA CACTTAAGAA AGAAGAAAGC AGAAGAAAGC AGAAGAAAGC	AAAGGGAGCT CAAGGGAGCT aAAGGGAGCT ATGACATCTG ATGACATCTG ATGACATCTG	GAGCTGATAG GAGCTTATAG GAGCTGATAG AATCAACCAC AATCAGCCAC AATCAACCAC	AAGCTAACAA AAGCTAACAA AAGCTAACAA AAATGTCACC AAATGTCACC AAATGTCACC	CCAGCTAAGC CCAACTAAAG CCAACTAAAG ACCTGCTCCA GCCTGCTCCA aCCTGCTCCA	520 CACAGGATGG CAGAGGTTGG CACAGGATGG 650 ACAGCTCTCT GCAGTGCTCT aCAGCgCTCT
MdDAM1 MdDAM4 Consensus MdDAM1 MdDAM4 Consensus MdDAM1	391 AAATTGGTGG AAATTGGTGG 521 TGATGTATCC TGATGTATCC TGATGTAACC 651 TTCCCTTGAA	AAGCAAGCCT AAGTAAGCAT AAGCAAGCAT CAGAGGA CGCTGGAGGA CaGAGGA GATGATTGCT	TGGCCGTGTG TGGCCGTGTA TGGCCGTGTA GATATCGGAC GATATCGAAC GATATCGAAC CCGACATCTT	ATTCAAACTA ATAAAAACTA ATaaAAACTA CGGAGGCCAT CGGCGGCGAT CGGGGGCCAT GTCTCTCAAA	AGGAAGAAAA AGGAAAAAAA AGGAAAAAAA CCTGGAGTTG CATGGAGTTG CATGGAGTTG CTGGGGTGA	GATTATGAGT GATAATGAGT GATAATGAGT GAAAACCTGA GAAAACCTGA GAAAACCTGA 705	GAGGTTATGG GAGATTATGG GAGATTATGG ATAATATTGG ATAATGTTGG ATAATATTGG	CACTTGAGAA CACTTACGAA CACTTAAGAA AGAAGAAAGC AGAAGAAAGC AGAAGAAAGC	AAAGGGAGCT CAAGGGAGCT aAAGGGAGCT ATGACATCTG ATGACATCTG ATGACATCTG	GAGCTGATAG GAGCTTATAG GAGCTGATAG AATCAACCAC AATCAACCAC AATCAACCAC	AAGCTAACAA AAGCTAACAA AAGCTAACAA AAATGTCACC AAATGTCACC AAATGTCACC	CCAGCTAAGC CCAACTAAAG CCAACTAAAC ACCTGCTCCA GCCTGCTCCA aCCTGCTCCA	520 CACAGGATGG CAGAGGTTGG CACAGGATGG 650 ACAGCTCTT GCAGTGCTCT aCAGcgCTCT
MdDAM1 MdDAM4 Consensus MdDAM1 MdDAM4 Consensus MdDAM1 MdDAM4	391 AAATTGGTGG AAATTGGTGG 521 TGATGTATCC TGATGTATCC 651 TTCCCTGAA	AAGCAAGCCT AAGTAAGCAT AAGCAAGCAT CAGAGGA CGCTGGAGGA CaGAGGA GATGATTGCT GATGACTGCT	TGGCCGTGTG TGGCCGTGTA TGGCCGTGTA GATATCGGAC GATATCGAAC GATATCGAAC CCGACATCTT CCGACATCTT	ATTCAAACTA ATAAAACTA ATaaAAACTA CGGAGGCCAT CGGGGGGCGAT CGGGGGCCAT GTCTCTCAAA GTCTCTCAAA	AGGAAGAAAA AGGAAAAAAA AGGAAAAAAA CCTGGAGTTG CATGGAGTTG CATGGAGTTG CTGGGGTGA CTGGGGGTAC	GATTATGAGT GATAATGAGT GAAAACCTGA GAAAACCTGA GAAAACCTGA 705 CTTAG	GAGGTTATGG GAGATTATGG ATAATATTGG ATAATATTGG ATAATGTGG ATAATATTGG	CACTTGAGAA CACTTACGAA CACTTAAGAA AGAAGAAAGC AGAAGAAAGC AGAAGAAAGC	AAAGGAAGCT CAAGGGAGCT aAAGGGAGCT ATGACATCTG ATGACATCTG ATGACATCTG	GAGCTGATAG GAGCTTATAG GAGCTGATAG AATCAACCAC AATCAACCAC AATCAACCAC	AAGCTAACAA AAGCTAACAA AAGCTAACAA AAATGTCACC AAATGTCACC AAATGTCACC	CCAGCTAAGC CCAACTAAAG CCAACTAAAC ACCTGCTCCA GCCTGCTCCA ACCTGCTCCA	520 CACAGGATGG CAGAGGTTGG CACAGGATGG 650 ACAGCTCTTT GCAGTGCTCT aCAGCgCTCT

Β

Figure S4. Similarity between MdDAM1 and MdDAM4 and sRNA abundance mapping on MdDAM4

Alignment of *MdDAM1* and *MdDAM4* shows a high similarity at the nucleotide level. Similar nucleotides are indicated in red (A). The abundance of small RNAs (sRNA) generated in 35S:*MdDAM1* transgenic lines and mapping on *MdDAM4* with a perfect match is indicated (B). The number of small RNA (sRNA) ranging from 19 nt to 24 nt mapping in sense (+ strand) or in antisense (- strand) are indicated by the black and blue lines, respectively. The flat lines shown in the NT control and in line P35S:*MdDAM1*#3 indicate that there were no sRNAs mapping on *MdDAM4*.