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ABSTRACT

The Gauss model for the time evolution of the first corona pandemic wave rendered useful in the
estimation of peak times, amount of required equipment, and the forecasting of fade out times. At
the same time it is probably the simplest analytically tractable model that allows to quantitatively
forecast the time evolution of infections and fatalities during a pandemic wave. In light of the
various descriptors such as doubling times and reproduction factors currently in use to judge
about lock-downs and other measures that aim to prevent spreading of the virus, we hereby
provide both exact, and simple approximate relationships between the two relevant parameters
of the Gauss model (peak time and width), and the transient behavior of two versions of doubling
times, and three variants of reproduction factors including basic reproduction numbers.

Keywords: coronavirus, statistical analysis, extrapolation, parameter estimation, pandemic spreading

1 INTRODUCTION
Recently [1], we demonstrated that the proposed [2, 3, 4] Gaussian time evolution for the daily number of
cases (deaths, or alternatively infections) at time t

c(t) = cmax e
−( t−tmax

w )
2

(1)

provides a quantitatively correct description for the monitored rates in 25 different countries. Here, cmax is
the maximum number of daily cases at peak time tmax, and w a characteristic duration. The Gauss model
(GM) is capable to reproduce reasonably well the monitored time evolution of the Covid-19 disease,
and even more important to make realistic predictions for the future evolution of the first wave in different
countries. An epidemologic foundation of the GM had been suggested by the agent-based model presented
in [1]. The GM can furthermore be regarded as an approximant of the classical Susceptible-Infected-
Recovered/Removed (SIR) model [5, 6] in the limit of large inverse basic reproduction numbers [7].
From a mathematical viewpoint, a sigmoidal time evolution involving a polynomial in the exponent of an
exponential can be Taylor expanded about the maximum; the GM corresponds to the lowest non-trivial
order of a Taylor expansion.
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Values for the parameters of the GM had been extracted by fitting the natural logarithm of the monitored
rates with

ln c(t) = ln cmax −
(
t− tmax

w

)2

= ln cmax −
t2max

w2
+

2tmaxt

w2
− t2

w2
, (2)

which is a polynomial of second order in t, to derive the best fit values and their confidence errors of
the three parameters cmax, w and tmax. These parameters are are country-specific and reflect the regional
differences in treatment, geographical, political, socioeconomic situations, available equipment etc. If this
fitting and parameter determination is done during the early stage of the pandemic wave, the GM makes
predictions for the later time evolution of the wave.

The starting time of the outbreak, t0 can be defined by the first occurrence of a case, c(t0) = 1, and
is thus known from the parameters of the Gaussian. Inverting c(t0) = 1 readily yields ln(cmax) = (t0 −
tmax)2/w2, or

t0 = tmax − w
√

ln cmax (3)

To simplify notation, besides absolute time t we introduce two more times. First, the time relative to the
peak time, denoted by

∆ = t− tmax (4)

so that negative (positive) ∆ correspond to times before (after) the peak time. Second, the dimensionless
time x = −∆/w. As time unit we choose days throughout, so that ∆ = +2 corresponds to two days
after peak time, and w is also given in units of days, while c is a dimensionless number of cases, usually
renamed as d or i if we specialize to deaths or infections. The three parameters of the GM are related,
but not identical for deaths and infections, as discussed earlier [1]. The related – to equation (3) – starting
time

∆0 = t0 − tmax = −wx0 = −w
√

ln cmax (5)

is negative, x0 =
√

ln cmax is positive, and |∆0| is the number of days between outbreak and climax of
the first pandemic wave. All properties derived for the GM must therefore depend on w, cmax, and x or
alternatively ∆, where ∆ ∈ [∆0,∞].

Often monitored data are reported in terms of doubling times and effective reproduction factors. These
are also important indicators for the future temporal evolution of the disease, especially if no functional
form for the case temporal evolution, such as the GM (2), is adopted. However, there are differently
defined doubling times as well as reproduction factors in use. It is the purpose of this manuscript to discuss
in detail the properties of differently defined doubling times and the differently defined reproduction
factors, their mutual relations to each other, and their temporal behavior for the GM.

2 DAILY INSTANTANEOUS DOUBLING TIME
As before [2] we consider the relative change of the daily number of cases for the GM

p(t) =
c′(t)

c(t)
= [ln c(t)]′ = −2∆

w2
=

2x

w
, (6)

where the prime denotes a derivative with respect to time t, c′(t) = dc(t)/dt. The monitored data are
often given in terms of the instantaneous doubling time d of the corresponding exponential functions at
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any time for the daily number of cases

ca(t) ∝ e
t ln 2
d = 2t/d, (7)

with the obvious properties ca(t+d) = 2ca(t). With these corresponding exponential functions we obtain
for the relative changes in the daily rate

p(t) = [ln ca(t)]
′ =

ln 2

d
. (8)

Equating the two results (6) and (8) leads to the time-dependent differential Gaussian doubling time

d(t) = −A
∆
, A = w2 ln

√
2 = 0.35w2. (9)

Apart from the changed notation these differential Gaussian doubling times agree with the earlier derived
equation (5) in [2]. The differential doubling time is positive for times earlier than the peak time, ∆ < 0,
monotonically increases in the course of time until it diverges as it approaches ∆ = 0. For later times
∆ > 0 the doubling time is formally negatively valued, but corresponds to positively valued half-lifes
approaching 0 for ∆ → ∞. Because of the divergence at ∆ = 0 and its negative value for ∆ > 0 daily
doubling times are of limited use only before the peak time of the outburst; instead in the public discussion
often cumulative doubling times are preferred, which we discuss in the next subsection. Apart from the
time ∆ relative to the peak time the daily instantaneous doubling time (9) is determined by the width w
of the Gaussian time evolution function (1). Figure 1 displays the distribution of widths w determined by
the best fit of the GM to the death rates in 67 countries, indicating that w ∈ [12, 34] with a mean value of
18.96.

We emphasize that at early times t of the time evolution, characterized by t0 ≤ t � tmax, or equiva-
lently, ∆0 ≤ ∆ � 0, the Gaussian time evolution function (1) approaches an exponential distribution
because the exponent −(t− tmax)2 ≈ −t2max + 2tmaxt becomes linear in t, and thus also linear in ∆. At
such early times the time relative to the peak time (4) is ∆0, so that the differential Gaussian doubling
time (8) approaches the constant

d0 ' d(t0) = − A

∆0
=

0.35w2

tmax − t0
, (10)

characterizing the initial, exponential growth.

3 CUMULATIVE DOUBLING TIME
Instead of defining doubling times with daily number of cases one may also define them with the cumu-
lative case rate. From equations (1) and (4) one has for the corresponding cumulative number of cases at
time t

C(t) =

∫ t

−∞
ds c(s) =

Ctot

2
[1 + erf (∆/w)] , (11)

respectively, in terms of the error function, where

Ctot =
√
π cmaxw (12)
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denotes the total number of cases. Such values for fatalities, Dtot, and infections, Itot relevant for the first
pandemic wave of the Sars-Cov-2 virus had been obtained in [1]. With the cumulative numbers (11) we
find for the respective relative change

P (t) = [lnC(t)]′ =
C ′(t)

C(t)
=

c(t)

C(t)
. (13)

Equating these results again with equation (8) for the corresponding exponential function1 leads to the
time-dependent cumulative Gaussian doubling times

D(t) =
C(t) ln 2

c(t)
= χwe(∆/w)2

[1 + erf (∆/w)], (14)

where χ =
√
π ln(
√

2) ' 0.614 abbreviates the numerical prefactor. Using the identities 1 + erf(x) =
1− erf(−x) = erfc(−x) in terms of the complimentary error function, we express equation (14) as

D(t) = χwF

(
−∆

w

)
(15)

with the function
F (x) = ex

2

erfc (x) (16)

As opposed to doubling times calculated from daily rates, doubling times derived from cumulative num-
bers are strictly positive, monotonically increase in the course of time, but never diverge, and remain finite
at ∆ = 0. Because x = −∆/w, the argument x of F (x) is positive before, and negative after the peak
time.

In Appendix A we investigate the properties of the function F (x) and its approximations. It is convenient
to consider times t before and after the peak time tmax, i.e. negative and positive ∆. We consider each in
turn.
3.1 Before peak time ∆ < 0

With the approximation (50) we obtain for the cumulative doubling time (15) at times t ≤ tmax

Dbefore(t) ' (χ/3)w2

w + 0.5|∆|

[
1 +

2w2

(w + 0.5|∆|)2

]
(17)

where ∆ = t − tmax is negative, and χ/3 ' 0.205. Dbefore(t) continuously increases with time until it
reaches Dmax (21) at peak time. At early times of the time evolution t � tmax, not only d, but also the
cumulative Gaussian doubling time (15) or (17) approaches the constant

D0 = Dbefore(t0) (18)

reflecting again the result that at early times the Gaussian time distribution function (1) approaches an
exponential distribution function with the constant doubling time (10), so that also the cumulative distri-
bution function initially displays an exponential behavior. The ratio of the two, differential (10) and
cumulative (18), limits is given by

1 We note that for a daily exponential rate in time also the cumulative number will be an exponential function in time.
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D0

d0
=

√
πF (x0)

x0
, x0 =

tmax − t0
w

(19)

with F from definition (16).
3.2 After peak time, ∆ > 0

Here we use the property (46) and the approximation (50) to obtain formally for the cumulative doubling
time (15)

Dafter(t) = χw
[
2e(∆/w)2

− F (∆/w)
]
' 2χwe(∆/w)2

−Dbefore(t) (20)

with 2χ ' 1.229, and where we can make use of Dbefore(t) from equation (17) because it was written for
this purpose in terms of |∆|. However, this Gaussian cumulative doubling timeDafter(t) for times t > tmax

is only a formal indicator for the decreasing slope of the cumulative rate C(t). As the cumulative rate (11)
indicates, at the peak times tmax it has the value C(tmax) = Ctot/2, so that for any times larger than tmax

the cumulative rates can no longer double. This implies that only the maximal cumulative doubling time

Dmax = D(tmax) = χw ' 0.614w (21)

has a real physical meaning. In Fig. 2 we calculate the Gaussian daily instantaneous and cumulative
doubling times as a function of the time ∆ relative to the peak time for three values of the Gaussian width
w = 10, 15, 20. It can be seen that at times below the peak time ∆ < 0 the two doubling times have
a similar behavior. As ∆ → 0 the instantaneous doubling times becomes infinitely large, whereas the
cumulative doubling times approaches large but finite values. However, as noted before, for times ∆ > 0
the Gaussian cumulative doubling time Dafter(t) is only a formal indicator for the decreasing slope of the
cumulative rate C(t) that can no longer double at any times larger than tmax.

Nevertheless, cumulative doubling times are issued by health agencies such as the Robert-Koch-Institut
to the public also at times after the peak time: they highly confuse the ordinary public people, as they
suggest by their name that the cumulative case rate can still double beyond its 50 percent value, although
this is no longer possible. Instead one should refer to the effective reproduction factor at this stage of the
wave time evolution, which we discuss next.

4 BASIC REPRODUCTION NUMBER R0 AND EFFECTIVE REPRODUCTION
FACTOR R(T )

In epidemiology, the basic reproduction number R0 (sometimes called basic reproductive ratio, or incor-
rectly basic reproductive rate), of an infection can be thought of as the expected number of cases directly
generated by one case in a population where all individuals are susceptible to infection [8, 9]. The defi-
nition describes the state where no other individuals are infected or immunized (naturally or through
vaccination). Some definitions, such as that of the Australian Department of Health, add absence of any
deliberate intervention in disease transmission. Within this manuscript, R0 is thus identical with the R(t)
at the starting time of the outbreak, i.e., R(t0) = R0.

The basic reproduction numberR0 is not to be confused with the effective, time-dependent reproduction
factor R(t), which is the number of cases generated in the current state of a population, which does not
have to be the uninfected state. By definition, R0 cannot be modified through vaccination campaigns.
Also, it is important to note that R0 is a dimensionless number and not a rate, which would have units of
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time like doubling time[8, 9]. Still, the basic reproduction number R0 will be seen to correspond to R(t)
evaluated at time t0.

The definition of the effective reproduction factor R(t) according to [10, 11] is

c(t) = R(t)
t∑

s=−∞
W (t− s)c(s) (22)

where c(t) is the number of daily cases (deaths or infections, usually the reproduction factor is obtained
from the reported number of daily infections) at time t and W (s) denotes the serial interval distribution
[12]. This distribution describes the probability for the time lag between a person’s infection and the
subsequent transmission of the virus to a second person, and is known to have an effect on the reproduction
factor [13]. The discrete sum in equation (22) starts from zero rather than unity as in Ref. [10, 11], because
W (0) = 0, and because we are here interested in the continuous generalization of equation (22).

Written in terms of integrals, equation (22) corresponds to [14]

R(t) =
c(t)∫∞

0 W (s)c(t− s) ds
(23)

while the serial interval distribution W (s) has to be properly normalized to unity, i.e.∫ ∞
0

dsW (s) = 1 (24)

This normalization is required in order to ensure according to equation (23) that a constant stationary c(t)
implies R(t) = 1. Note that in [11] they wrote E[c(t)] instead of c(t) on the left hand side of equation
(22), whereE[] signals that c(t) is an expectation value involving the serial distribution. Here, we consider
c(t) to be defined by equation (22) so that c(t) can be evaluated for the GM via equation (1).

In the following we investigate two different choices of the serial interval distribution, evaluated for the
GM: (i) as in previous studies[10, 11] the gamma distribution, and (ii) the analytically simpler box-shaped
serial interval distribution. We consider each in turn.

4.1 Gamma serial interval distribution
Here the serial interval distribution W (s) is taken to be the gamma distribution[15]

W (s) =
βαsα−1e−βs

Γ(α)
(25)

with the shape parameters α = 2.785 and β = α/6.5 that seem to represent the distribution used in
Ref.[10]. They used another convention, but mentioned the mean value 〈s〉 = 6.5 and provided an excel
file. The mean value of this distribution (25) is

〈s〉 =

∫ ∞
1

sW (s) ds =
α

β
(26)
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For the specified parameters the distribution (25) is very well approximated (absolute error less than 0.006)
by the slightly more convenient, and again properly normalized distribution

W (s) =
b3

2
s2e−bs, (27)

yielding as mean value 〈s〉 = 3/b. We adopt b = 4/9 = 0.444, leading to the mean 〈s〉 = 27/4 = 6.75
days, very close to the earlier chosen mean[10] 〈s〉 = 6.5 days. In Fig. 3 we compare the approximation
(27) with the discrete distribution used in Ref.[10] (black circles) during all their calculations.

4.1.1 Reproduction factor R(t)

Here we use the known c(t) = cmax exp[−(∆/w)2] for the GM (1). As for the doubling times, R(t)
does not depend on the magnitude cmax and absolute time t, but can be expressed in terms of the relative
time ∆ = t − tmax and w. With c(t − s) ∼ exp[−(∆ − s)2/w2] and with W (s) from (27) we can thus
proceed and calculate R(t) analytically as

R(t) =
2

b3J(t)
(28)

involving the time-dependent integral

J(t) =

∫ ∞
0

ds s2e−q1s−q2s
2

, (29)

where q2 = w−2 and q1(t) = b − 2∆/w2. To this end it turns out convenient to switch to dimensionless
times. We had already introduced x, we now introduce a characteristic xc

xc = −bw
2
, (30)

and the dimensionless, again time-dependent distance X between x and xc via

X(t) = x− xc =
bw

2
− ∆

w
=
wq1

2
. (31)

As shown in Appendix 5, the integral (29) can be evaluated analytically to yield

J(t) =

√
πw3

4

d

dX
[XF (X)] =

w3

4

[
(1 + 2X2)

√
πF (X)− 2X

]
(32)

with the function F given by (16). Consequently, the effective reproduction factor (28) becomes (Fig. 5)

R(t) =
−1

x3
c

√
π d
dX [XF (X)]

=
1

x3
c

{
2(x−xc)− [1 + 2(x−xc)2]

√
πF (x−xc)

} (33)

in terms of x, and the negatively valued xc, where we recall that x = (tmax − t)/w = −∆/w carries the
dependency on time t. The effective reproduction factor approaches the basic reproduction number R0 at
small times and assumes the important value R(t) = 1 roughly 4 days after peak time, at ∆ ≈ 4, as Fig. 5
indicates. It is not difficult to show that this ∆ asymptotically approaches 2/b = 9/2 = 4.5 days for large
w (Appendix 5).
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4.1.2 Base reproduction number R0

While the basic reproduction number R0 for the GM can be read off from (33) upon replacing x by
x0 =

√
ln cmax (shown in Fig. 4), it is insightful to make the connection between R0 and the early

doubling time d0 = (ln
√

2)w/x0, according to (10). As the Gaussian time distribution is exponential at
early times, in the vicinity of t ' t0, we can insert the exponential growth (7) into definition (23) with the
gamma-shaped serial distribution W (s). This yields a time-independent constant effective reproduction
factor

R0 = R(t0) ≈ 2

b3
∫∞

0 ds s2 exp[−(b+ ln 2
d0

)s]
=

(
1 +

ln 2

bd0

)3

=

(
1− x0

xc

)3

(34)

where b = 4/9, and where we have also mentioned its appearance in terms of dimensionless x0 and xc.
Since d0 is positive, the exponential effective reproduction factor at time t0 (34) is greater than unity, and
provides an approximation for the exact one (Fig. 4). It is worthwhile to mention that the same result
is obtained without assuming a purely exponential growth, but instead starting from (33), and assuming
x0 � xc + 1 (for a proof see Appendix 5). For a model with purely exponential growth characterized by
a single doubling time d0, equation (34) provides the exact relationship between doubling time and basic
reproduction number, and R(t) = R0.

Adopting b = 4/9 and w = 20 and thus xc = −40/9 according to (30), provides for the number (34)

Rw=20
0 =

(
1 + 0.225

√
ln cmax

)3
, (35)

yielding the estimates 4.77, 4.03, and 3.26 for cmax = 104, 103, and 102, respectively, close to the exact
values given by R(t0) from equation (33). The values of ∆0 and R0 for different values of the width w
and cmax = 1 are marked by circles in Fig. 5.

4.2 Box-shaped interval distribution
With this section we address the question on how relevant it is to take into account the correct shape of

serial interval distribution when calculating R(t) via (23).

If we consider W (s) to be approximated by a constant independent on s on the interval s ∈ [0, smax],
and zero otherwise, the requirement of its proper normalization (24) and unchanged mean value 〈s〉 = 6.5
compared with the unapproximated W (s) from (25) yields

W (s) =
Θ(s; 0, smax)

smax
, smax = 2〈s〉 = 13 (36)

with the two-sided Heaviside Θ(x,A,B) = 1 for A ≤ x ≤ B and Θ(x) = 0 otherwise.
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4.2.1 Reproduction factor R(t)

With the Gaussian evolution (1) and the box-shaped serial interval distribution (36) inserted we obtain
with the help of (23)

R(t) =
smax∫ smax

0 exp[(2∆− s)s/w2] ds

=
2smax/w

√
πe(∆

w )2
[erf (∆/w)− erf ([∆− smax]/w)]

=
26/w

√
π

[
e

26(∆−6.5)

w2 F
(

∆−13
w

)
− F

(
∆
w

)] (37)

plotted in Fig. 5. As is visible, the box-shaped W (s) can serve as a good approximation as long as w is
sufficiently large, and ∆ not too small. It crosses theR = 1 line roughly 4 days after peak time, and shares
this feature with the case of the gamma-shaped serial distribution. Starting from R(t) = 1 with R(t) from
(37), the exact asymptotic value is t = tmax + (smax/3) days (proof in Appendix 5).

4.2.2 Base reproduction number R0

The basic reproduction number is given by R(t0), which amounts to replacing ∆ by ∆0 in (37). As
before, it is useful to consider a regime of exponential growth to come up with a simple approximant for
R0, now using a box-shaped W (s). Inserting the exponential time evolution (7) with constant d0 and the
box-shaped serial interval distribution (36) into equation (23) we obtain the time-independent constant
effective box reproduction factor that serves an approximant for R0,

R0 = R(t0) ≈ smax ln 2/d0

1− e−smax ln 2/d0
(38)

which is always greater than unity for positive d0. Since smax ln 2 ≈ 9 days, we thus have

R0 ≈ 9/d0 (39)

as long as d0 < 9 days, which is the usual scenario (Fig. 2). As already mentioned, the box-shaped serial
interval distribution is better not used to estimate R0. It significantly underestimates the R0 obtained with
the gamma serial distribution.

4.3 Robert Koch institute (RKI)
The RKI estimates an effective reproduction factor from the daily measured number i(t) of people that

have been recognized to be infected as follows

R(t) =

∫ t
t−4 ds i(s)∫ t−4
t−8 ds i(s)

(40)

Here we again use the continuous version. Because measured data is not available for the future, and not
sufficiently reliable if collected within the time frame of a few days, the RKI estimates R(t) for a time
t that lies one 8 days the past. A connection between (40) and the true effective reproduction number is
based on the assumption that the true number of cases is proportional to the measured ones, at any time.
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4.3.1 Reproduction factor R(t)

Using the GM instead of measured numbers for i(t), and thus the estimated true number of cases (deaths
or infections) in equation (40) yields

R(t) =
erf[∆/w]− erf[(∆− 4)/w]

erf[(∆− 4)/w]− erf[(∆− 8)/w]
(41)

shown in Fig. 5. With (41) at hand one can predict the RKI version of R(t) at all times during the first
wave of a pandemy. A time of interest is when R drops below unity. Equation (41) readily yields for
∆ = 4, with erf(0) = 0,

R(tmax + 4) = − erf(4/w)

erf(−4/w)
= 1, (42)

in agreement with Fig. 5. It is this feature of the RKI, shared with the R(t) for the gamma serial distri-
bution, that may have given rise to the choice of the interval length of 4 days in its definition. Figure 6
shows, for typical values between w = 15 and w = 20 days, how the R(t) calculated via the box-shaped
W (s), and even more the RKI value, overestimate the R(t) at times beyond peak time.

4.3.2 Base reproduction number R0

As in previous sections, we can read off the basic reproduction number R0 upon inserting ∆0 instead
of ∆ into the expression for R(t) (41), and we can provide an approximate expression for R0 upon
considering purely exponential, initial growth. Following this route, inserting monoexponential i(t) ∝
2t/d0 into (40) yields

R0 = R(t0) ' 2t/d0 − 2(t−4)/d0

2(t−4)/d0 − 2(t−8)/d0
= 24/d0 (43)

While the two approximants (34) and (43) for basic reproduction numbers look different at first glance,
they are quantitatively very similar: for d0 = 1, for example, (34) evaluates to 16.77, while (43) equals
16.0. Likewise, for d0 = 2 (34) evaluates to 5.64, while (43) equals 4.0. In the limit of d0 → ∞, both
versions yield R0 = 1. The RKI version generally underestimates R0 as given by (34), but by no more
than about 35%.

5 SUMMARY AND CONCLUSIONS
The Gauss model for the time evolution of the first corona pandemic wave rendered useful in the esti-
mation of peak times, amount of required equipment, and the forecasting of fade out times. At the same
time it is probably the simplest analytically tractable model that allows to quantitatively forecast the time
evolution of infections and fatalities during a pandemic wave. For these descriptions and forecasts various
descriptors such as doubling times and reproduction factors are currently used in order to judge about
lock-downs and other non-pharmaceutical measures that aim to prevent spreading of the virus. As diffe-
rent definitions of doubling times and reproduction factors and numbers are used in the literature, we have
provided in this manuscript both exact, and simple approximate relationships between the two relevant
parameters of the Gauss model (peak time tmax and width w) as well as the transient behavior of two
versions of doubling times, and three variants of reproduction factors R(t) including basic reproduction
numbers R0.

Regarding doubling times we considered both, differential doubling times calculated from the daily
number of cases, and cumulative doubling times calculated from the cumulative case rates. The former
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differential doubling time is positive for times earlier than the peak time, monotonically increases in the
course of time until it diverges as it approaches the peak time. For later times after the peak time the
differential doubling time is formally negatively valued, but corresponds to positively valued half-lifes.
Because of the divergence at the peak time and its negative value beyond, differential doubling times are
of limited use only before the peak time of the outburst; instead in the public discussion often cumulative
doubling times are preferred.

As opposed to doubling times calculated from daily rates, doubling times derived from cumulative
numbers of cases are strictly positive, monotonically increase in the course of time, but never diverge,
and remain finite at and after the peak time. At times below the peak time the two doubling times have a
similar behavior. However, the Gaussian cumulative doubling time for times after the peak time is only
a formal indicator for the decreasing slope of the cumulative rate of cases. The Gaussian cumulative rate
at the peak time attains exactly 50 percent of its maximum value after infinite time, so that for any times
larger than the peak time the cumulative rates can no longer double. This implies that only the maximal
cumulative doubling time 0.614w has a real physical meaning.

Because of these two drawbacks of differential and cumulative doubling times in characterizing the
time evolution of the corona wave after its peak time, health agencies such as the German Robert-Koch-
Institute (RKI) instead refer to the effective reproduction factor of the disease R(t) which is the number
of cases infected in the current state of a population by a single individual infected person. As long as
this factor remains smaller than unity the number of infections per day decreases with time. The effective
reproduction factor is calculated from an integral involving the serial interval distribution W (s) norma-
lized to unity and the differential case time distribution. For the GM the latter is known analytically, so
that we investigated three different effective Gaussian reproduction factors: (i) the first is calculated with
a gamma-function type serial interval distribution, (ii) the second with a flat box-shaped serial interval
distribution, and (iii) the third, referred to as RKI estimate, involves the ratio of two consecutive 4-day
time intervals of the monitored daily cases.

All three discussed effective reproduction factors calculated with the GM decrease from the base repro-
duction number R0 at the beginning of the pandemic wave to very small values at times much larger
than the peak time. They all cross the critical value R = 1 about four days after the peak times. As the
approximated RKI estimate for Germany still, many weeks after the peak times of the infection and death
rates, occasionally indicates effective reproduction factors greater than unity, this has to be due to short
intraday fluctuations of the rates. Such factors greater unity at late times after the peak time contradict
the much smaller (below unity) effective reproduction factors from the GM, as we have demonstrated by
Fig. 6. As the GM provides reasonable descriptions of the overall temporal evolution of the infection and
death rates in Germany, we have to conclude that the present RKI estimate of the effective reproduction
factor overestimates the influence of short intraday fluctuations in the reported cases.

Note added in proof. The RKI has sligthly adjusted its definition of R(t) in the meantime.
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Figure 1. Distribution of widths w obtained by the best fit of the GM to the death rates in 67 different
countries [16].
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Figure 2. Comparison of the daily instantaneous (d) and cumulative (D) doubling times as a function of
the time ∆ relative to the peak time for three values of the Gaussian width w = 10, 15, 20. The circles
mark ∆0 for cmax = 1, cf. equation (5): the GM should not be used at times smaller than ∆0.
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Figure 3. Comparison of serial interval distribution W (s) employed in [10, 11] (black circles) and our
approximant (27) with b = 4/9.
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Figure 4. Basic reproduction number R0 = R(t0) for the GM as function of peak width w for several
peak heights cmax (thick solid lines). For comparison, the thin lines show the approximant (34). The exact
R0 is given by (33) evaluated at x = x0 =

√
ln cmax.
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Figure 5. Gamma-shapedR(t) (33) compared with the approximateR(t) (37) (red, dashed), using a box-
shaped serial interval distribution W (s), and the RKI formula (41). Cases shown are w = 10, w = 15,
and w = 20. Deviations are most pronounced and significant for the smallest w = 10. The R(t) curves
terminate at t = t0 corresponding to ∆ = ∆0, see (5). The circles mark ∆0 for cmax = 1.
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Figure 6. The R(t) factors obtained using (i) the box-shaped W (s) and (ii) the RKI formula greatly
overestimate the R(t) using a gamma-shaped serial interval distribution at times beyond the peak time.
Alternative representation of the data already shown in Fig. 5. The mismatch increases with decreasing
w. A typical w is in the range between 15 and 20 days for most countries [1], cf. Fig. 1.
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APPENDIX 1. THE FUNCTION F
The function F (x) = exp(x2)erfc (x) defined in (16) has the properties

F (0) = 1, F (x→∞)→ 0 (44)

and it fulfills the differential equation

dF (x)

dx
= 2

[
xF (x)− 1√

π

]
. (45)

F (x) is monotonically decreasing with increasing x, as the right hand side of (45) is negative for all x,
and because its 2nd derivative is strictly positive.

Moreover, because of the property erf(−x) = − erf(x), implying erfc(−x) = 2− erfc(x) we find for
negative arguments

F (−x) = 2ex
2

− F (x) (46)

For positive values of x ≥ 0 the rational approximation[15] of the function F (x) is given by F (x) =
a1y − a2y

2 + a3y
3 with y = 1/(1 + qx), q = 0.47047, a1 = 0.3480242, a2 = 0.0958798, and a3 =

0.7478556 (approximant I). Given the smallness of a2 we use as even simpler approximation[17] for
positive arguments

F (x) ' a1y + (1− a1)y3 = a1y

(
1 +

a4

a1
y2

)
(47)

with unchanged a1, q, and y = (1 + qx)−1, and where a4 = a3− a2 = 1− a1 = 0.6519758, and a4/a1 '
1.873 (approximant II). It has been shown before (see Fig. 1 in [17]) that the last approximation (47)
deviates at most by 5 percent from the earlier rational one [15]. We note that the rational approximation
(47) fulfils the properties (44).

If we do not constrain the approximant to share coefficients with the one given in [15], the approximant
can be further improved (Fig. S1). An approximant with the correct asymptotic behavior must fulfill
limx→∞ xF (x) = 1/

√
π, which can be inferred from (45). This condition is not fulfilled for the above

approximants, as it implies q =
√
πa1. An ansatz parameterized by yet unknown a with correct both

asymptotic behavior at x→∞ and correct value at x = 0 is

F (x) ≈ y
1 + 2ay2

1 + 2a
, y =

(
1 +

√
πx

1 + 2a

)−1

(48)
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Figure S1. Absolute and relative error of some approximants for F (x), defined by (16), at x ≥ 0.
Approximant I from [15] involving the quadratic term with a2 = 0.0958798, without quadratic term
and unchanged a1 = 0.3480242 and q = 0.47047 in y = 1/(1 + qx) (approximant II), without quadratic
term and asymptotically correct behavior (49), and with simpler coefficients (50). For the asymptotically
correct, including a quadratic term we find a1 = 0.656411 and a2 = −0.770823, a3 = 1 − a1 + a2 and
q =
√
πa1 to be the parameters with the smallest maximum relative error (approximant III).

We find a = 8/5 by minimizing the relative maximum error (shown as magenta curve in Fig. S1). Inserting
this value for a, the approximant reads

F (x) ≈ y

21
(5 + 16y2), y =

(
1 +

5
√
πx

21

)−1

(49)

A somewhat simpler approximant, sufficient for practical purposes, but with wrong asymptotic behavior,
is (blue curve in Fig. S1)

F (x) ≈ y

3

(
1 + 2y2

)
, y = (1 + 0.5x)−1 (50)

APPENDIX 2. DERIVATION OF EQUATION (32)
We readily calculate (29) via

J = − ∂

∂q2

∫ ∞
0

ds e−q1s−q2s
2

= −
√
π

2

∂

∂q2

[
q
−1/2
2 e

q2
1

4q2 erfc
(

q1

2
√
q2

)]

= −
√
π

2

∂

∂q2

[
q
−1/2
2 F

(
q1

2
√
q2

)]
(51)

in terms of the function (16). The property (45) can then be used to provide

∂

∂q2
F

(
q1

2
√
q2

)
=

[
∂

∂q2

(
q1√
q2

)][
q1

2
√
q2
F

(
q1

2
√
q2

)
− 1√

π

]
= − q1

2q
3/2
2

[
q1

2
√
q2
F

(
q1

2
√
q2

)
− 1√

π

]

= − q2
1

4q2
2

F

(
q1

2
√
q2

)
+

q1

2
√
πq

3/2
2

(52)
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With this result we obtain for the integral (51)

J =

√
π

2

[
F

2q
3/2
2

+
1

q
1/2
2

(
q2

1F

4q2
2

− q1

2
√
πq

3/2
2

)]

=
√
π

(
1

4q
3/2
2

+
q2

1

8q
5/2
2

)
F − q1

4q2
2

=

√
π(q2

1 + 2q2)F
(

q1
2
√
q2

)
− 2q1q

1/2
2

8q
5/2
2

(53)

Now we can replace q1 and q2 by their definitions mentioned below (29). Since the argument of F can also
be written as q1/2

√
q2 = wq1/2 ≡ X , and because q2

1 + 2q2 = 2(1 + 2X2)/w2, and 2q1q
1/2
2 = 4X/w2,

we end up with the right term in (32), i.e.

J =
w3

4

[
(1 + 2X2)

√
πF (X)− 2X

]
(54)

With the help of (45), equation (54) can be rewritten in a compact fashion as the middle term in (32)

J =

√
πw3

4

d

dX
[XF (X)]. (55)

Proof: Making use of the product rule and (45)

J =

√
πw3

4

[
F (X) +X

dF (X)

dX

]
=

√
πw3

4

[
F (X) + 2X

(
XF (X)− 1√

π

)]
(56)

is obviously identical with (54).

APPENDIX 3. ASYMPTOTIC LIMITS OF THE INTEGRAL J(X) AND THE
REPRODUCTION FACTOR R(X)
Here we investigate analytically the asymptotic limits of the integral J(t) as given by (54) or (55), and
the effective reproduction factor R(t) = 2/b3J(t) according to (28) for the gamma-shaped serial interval
distribution as function of the dimensionless time (31), now written in terms of ∆ rather than x using
definitions (30) and (31)

X =
∆c −∆

w
, ∆c =

bw2

2
(57)

We investigate four limits: (a) very early times ∆ � ∆c − w, corresponding to very large positive
values of the dimensionless time X � 1, (b) times (∆c − w) � ∆ ≤ ∆c corresponding to small
values of 0 ≤ X � 1. For times ∆ ≥ ∆c the dimensionless time X = −X̄ is negative with positive
X̄ = (∆ −∆c)/w. (c) times ∆c ≤ ∆ � ∆c + w corresponding to small values of 0 ≤ X̄ � 1, and (d)
very late times ∆� ∆c + w corresponding to X̄ � 1. Consider each case in turn.

Frontiers A3



Appendix (Gaussian doubling times and reproduction factors ...)

3.1 Case (a) ∆ � ∆c − w

As X � 1 we use the asymptotic expansion[15]

√
πXF (X) ' 1 +

∞∑
m=1

(−1)m1 · 3 · · · (2m− 1)

(2X2)m
' 1− 1

2X2
+

3

4X4
, (58)

implying
√
π
d

dX
[XF (X)] ' 1

X3
− 3

X5
(59)

Hence to lowest order in X−1 � 1 the function (55) becomes

J(∆� ∆c − w) ' w3

4X3
=

w6

4(∆c −∆)3
, (60)

corresponding according to equation (57) to

R(∆� ∆c − w) ' 8(∆c −∆)3

b3w6
=

(
∆c −∆

∆c

)3

=

(
1− ∆

∆c

)3

=

(
1− x

xc

)3

(61)

Special case ∆ = ∆0. The inequality ∆ � ∆c − w applies for the special case of ∆ = ∆0 as long as
w � 2/b = 9/2 = 4.5 for the following reason. If bw/2� 1, then bw2/2 = ∆c � w > w+∆0, because
∆0 is negative. The analytical approximation (61) then provides

R0 =

(
1− x0

xc

)3

=

(
1 +

2
√

ln cmax

bw

)3

, (62)

agreeing exactly with (34) that was derived using a different approach.

3.2 Case (b) (∆c − w) � ∆ ≤ ∆c

Here 0 ≤ X � 1 and we approximate

F (0 ≤ X � 1) ' (1 +X2)

(
1− 2√

π

∫ X

0
dy (1− y2)

)
' 1− 2X√

π
+X2 (63)

Consequently,
d

dX
[XF (X)] ' 1− 4X√

π
+ 3X2, (64)

so that to lowest order in X � 1

J(∆c − w � ∆ ≤ ∆c) '
w3

4
(
√
π − 4X) (65)

and

R(∆c − w � ∆ ≤ ∆c) '
w4

∆3
c [
√
πw − 4(∆c −∆)]

(66)
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3.3 Case (c) ∆c ≤ ∆ � ∆c + w

Here 0 ≤ X̄ � 1 using the short-hand notation X̄ = −X . According to (46)

F (−X̄) = 2eX̄
2

− F (X̄) (67)

and (55) reads in terms of X̄

J =

√
πw3

4

d

dX̄
[X̄F (−X̄)] =

√
πw3

4

d

dX̄

[
2X̄eX̄

2

− X̄F (X̄)
]

(68)

For 0 ≤ X̄ � 1 we use the asymptotic limit (63) for

F (0 ≤ X̄ � 1) ' 1− 2X̄√
π

+ X̄2 (69)

yielding for

2X̄eX̄
2

− X̄F (X̄) ' X̄ +
2√
π
X̄2 + X̄3, (70)

so that

J(∆c ≤ ∆� ∆c + w) '
√
πw3

4

(
1 +

4X̄√
π

)
(71)

and

R(∆c ≤ ∆� ∆c + w) ' w4

∆3
c [
√
πw + 4(∆−∆c)]

, (72)

Equations (71)–(72) are identical to the former (65)–(66).

3.4 Case (d) ∆ � ∆c + w

Here X̄ � 1 with the positive X̄ = −X , so that equation (68) still applies. For the present purpose we
write it as

J =
w3

4

d

dX̄

[
2
√
πX̄eX̄

2

−
√
πX̄F (X̄)

]
, (73)

Since X̄ � 1 we use the approximation (58) for F to obtain

J(X̄ � 1) ' w3

4

d

dX̄

[
2
√
πX̄eX̄

2

− 1 +
1

2X̄2

]
(74)

To leading order we thus find

J(∆� ∆c + w) '
√
πw3X̄2eX̄

2

=
√
πw(∆−∆c)

2e(∆−∆c
∆c

)2

(75)

and finally the very small reproduction factors

R(∆� ∆c + w) ' w5e−(∆−∆c
w )2

4
√
π∆3

c(∆−∆c)2
(76)
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Figure S2. The effective reproduction factor drops below unity ∆ days after peak time. Shown is ∆ as
function of the peak width w for the GM with gamma-shaped (thick solid), box-shaped (dot-dashed) serial
interval distribution, and the RKI factor. Asymptotic values for large w are derived in the text part.

APPENDIX 4. CROSSING THE R = 1 LINE
4.1 Gamma-shaped W (s)

According to equation (33) the R(t) is unity when

√
π
d

dX
[XF (X)] = − 1

x3
c

(77)

As the right-hand side of this equation is a small positive number, we expect solutions of this equation for
large values of X . Using the asymptotic expansion (59) we obtain

1

X3
− 3

X5
' − 1

x3
c

(78)

with the solution

X ' − xc

(1 + 3
x2
c
)1/3
' −xc

(
1− 1

x2
c

+
2

x4
c

)
= −xc +

1

xc
− 2

x3
c
, (79)

where we used (1 + ε)−1/3 = 1− (ε/3) + (2ε2/9). With X = (∆c−∆)/w = −xc− (∆/w) the solution
(79) corresponds to

∆ = −w
xc

(
1− 2

x2
c

)
=

2

b

[
1− 8

(bw)2

]
(80)

To lowest order ∆ = 2/b = 9/2 = 4.5 days in agreement with Figs. 5 and S2.

4.2 Box-shaped W (s)

For the case of a box-shaped W (s) we can do the corresponding calculation. We introduce η = smax/w
and x = −∆/w. R(t) in equation (37) reaches unity when

η =

√
π

2
ex

2

[erf (x+ η)− erf (x)] (81)
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With the integral representation of the error function we obtain

η =

∫ η

0
ds =

∫ x+η

x
dt e−(t2−x2) (82)

Substituting on the right hand side t = s+ x leads to∫ η

0
ds [e−(s2+2xs) − 1] = 0 (83)

We consider the limit where
η2 + 2xη � 1, (84)

allowing us to approximate equation (83) as

0 =

∫ η

0
ds [e−(s2+2xs) − 1] ' −

∫ η

0
ds [s2 + 2xs] = −η2 (x+ η/3) , (85)

yielding as solution
x = −η

3
= −smax

3w
, (86)

which fulfils the constraint (84) for all values of η �
√

3. With x = −∆/w the solution (86) corresponds
to ∆ = smax/3. Using smax = 13, this translates into R(t) = 1 at ∆ = 13/3 ≈ 4.33, in agreement with
Figs. 5 and S2.
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