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1 DETAILED DERIVATION FROM CHEMICAL MASTER EQUATIONS TO
STEADY-STATE DISTRIBUTIONS

Since it is difficult to obtain the theoretical results of chemical master equations, the method of probability-
generating functions is used to change chemical master equations into differential equations which may
be solved with mathematical skill. Based on this method, two factorial probability-generating functions
Gi(z) =

∑∞
m=0 Pi(m)zm with i = 0, 1 are introduced. Substituting these into Eq.2:

koffG1(z)− konG0(z) + k2zG
′
1(z)− ak1G0(z) + ak3(z − 1)G0(z)− (z − 1)G′0(z) = 0,

−koffG1(z) + konG0(z)− k2zG′1(z) + ak1G0(z) + ak3(z − 1)G1(z)− (z − 1)G′1(z) = 0.(S1)

Here, all parameters have been normalized by k4 as mentioned in Sec.II. It is found from Eq. S1 that

(e−ak3zG0)
′ = −(eak3zG1)

′. (S2)

e−ak3zGi is set as Hi for simplicity. From Eq. S2, we can determine that H ′0 = −H ′1. This allows us to
obtain H0 from H1. In the following, we will only focus on the expression of H1, which can be deduced
from Eq. S1 as

A(z)H ′′1 +B(z)H ′1 + CH1 = 0 (S3)

in which A(z) = (k2 + 1)z − 1, B(z) = ak2k3z + koff + kon + ak1 + k2 + 1, and C = ak2k3. Until now,
it seems difficult to obtain the analytical distribution because the coefficients of Eq. S3 are dependent
on the variable z. Another transformation of the form H1(z) = emzW (nz + p) (here, m, n and p are
undetermined constants) is introduced in Eq. S3, and hence a solvable differential equation about W is
obtained as

ωW ′′(ω)− (β − ω)W ′(ω)− αW (ω) = 0 (S4)
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where

ω =
ak2k3
k2 + 1

z − ak2k3
(k2 + 1)2

,

α =
ak2k3

(k2 + 1)2
+
kon + koff + ak1

k2 + 1
,

β =
ak2k3

(k2 + 1)2
+
kon + koff + ak1

k2 + 1
+ 1. (S5)

There are two independent solutions of Eq. S4. One is expressed by the Tricomi function of the form
U(α, β;ω). This result is inadmissible because it is required that P1(m)→ 0 form→∞. The other solution
is expressed by the confluent hypergeometric function of the form 1F1(α, β;ω). The analytical expressions
for the probability-generating functions are presented as below

G0(z) = A0[e
ak3(z−1) − eak3z/(k2+1)

1F1(α− 1, β − 1;ω)],

G1(z) = A0e
ak3z/(k2+1)

1F1(α, β;ω) (S6)

Furthermore, based on the relationship between probability distribution and generating function:

Pi(m) =
1

m!

dm

dzm
G0(z)|z=0. (S7)

The analytic results of probability distributions are obtained and shown in the text (i.e., Eq.3 in Sec.II).

2 THE RESULTS OF NUMERICAL SIMULATIONS
The direct method to verify our analytical results is numerical simulations. The approximate probability
distributions of Pi(m) obtained by Monte Carlo simulation are given in Fig.S1.

Figure S1. The numerical simulated results about probability distribution functions of the gene’s states .
The parameters are the same with Fig.3(a) and (b): k1 = 20, k2 = 10, k3 = 1.5, kon = koff = 2. P0(m) is
the probability of the gene’s “off” state indicated with orange curve, P1(m) is the probability of gene’s “on”
state indicated with blue curve.
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Figure S2. The numerical simulated results about gene’s state dominance factor δ which is consistent
with that in Fig.4(c). δ will increase with the increasing of the strength of external signal in Mode I. The
values of other parameters are listed in Table I.

Moreover, the curve between δ and a which is obtained by Monte Carlo simulation with the same set of
parameters in Fig.4(c) is shown in Fig.S2. It is obviously that the trend of δ is similar with the curve in
Fig.4(c).

3 THE COMPARISONS BETWEEN THE TOTAL ENERGY DISSIPATION AND THE
ENERGY DISSIPATION IN THE SYNTHESIS-DEGRADATION PROCESS OF
ROCK IN MODE I AND II

The Fig.S3 shows the trends of the total energy dissipation (i.e., EP ) and the energy dissipation in
the synthesis-degradation process of ROCK (i.e., EPm) with the increase of the strengthen of external
stimulations (i.e., a) in Mode I and II. It is obviously that their trends are consistent as a increases
in its respective modes. Specifically, EP and EPm increase simultaneously in Mode I and decrease
simultaneously in Mode II with the enhancing of the strengthen of external stimulations (i.e., a). Moreover,
the difference between EP and EPm diminishes both in Mode I and Mode II when a increases.

Figure S3. The comparisons between the total energy dissipation and the energy dissipation in the
synthesis-degradation process of ROCK in Mode I and II. The values of all parameters are listed in Table I.
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4 PARAMETERS TABLE
The values of the main parameters used in calculations are given in Table I. All these parameters have been
normalized by the degradation rate of ROCK (i.e., k4).

Table I: The values of parameters used in calculations
Parameters Value
The reaction rate of positive control (k1) 20
The reaction rate of negative control (k2) 10
The synthetic rate of ROCK (k3) 1.5 (Mode I) or 5 (Mode II)
The basic switch rate of gene to “on” state (kon) 2
The basic switching rate of gene to “off” state (koff) 2
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