
Supplementary Material

1 Drivers description

Table S1. List of drivers currently available on eDrivers along with their respective acronym
used in the figures of the supplementary material.

Groups Drivers Acronym Source

Climate Aragonite ACID (Starr and Chassé, 2019)
Climate Bottom-water

temperature
SBT- (Galbraith et al., 2018)

Climate Bottom-water
temperature

SBT+ (Galbraith et al., 2018)

Climate Hypoxia HYP (Blais et al., 2019)
Climate Sea-level rise SLR (Halpern et al., 2015a)
Climate Surface-water

temperature
SST- (Galbraith et al., 2018)

Climate Surface-water
temperature

SST+ (Galbraith et al., 2018)

Coastal Aquaculture AQUA (AAF, 2016; DFO, 2016a; FA,
2016; FFA, 2016; MAPAQ,
2016)

Coastal Coastal development CD (Earth observation group,
2019)

Coastal Direct human impact DHI (Statistics-Canada, 2017)
Coastal Inorganic pollution IP (Halpern et al., 2015a)
Coastal Nutrient import NI (Halpern et al., 2015a)
Coastal Organic pollution OP (Halpern et al., 2015a)
Coastal Toxic algae TA (Bates et al., 2019)
Fisheries Demersal, destructive DD (DFO, 2016b)
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Groups Drivers Acronym Source

Fisheries Demersal,
non-destructive,
high-bycatch

DNH (DFO, 2016b)

Fisheries Demersal,
non-destructive,
low-bycatch

DNL (DFO, 2016b)

Fisheries Pelagic, high-bycatch PHB (DFO, 2016b)
Fisheries Pelagic, low-bycatch PLB (DFO, 2016b)
Marine
traffic

Invasive species INV (Halpern et al., 2015a)

Marine
traffic

Marine pollution MP (Halpern et al., 2015a)

Marine
traffic

Shipping SHP (Halpern et al., 2015a)

1.1 Climate

1.1.1 Acidification

Oceans are the largest reservoirs and sinks of atmospheric carbon dioxide (CO2). Its uptake
increases seawater acidity and lowers the saturation state of waters with respect to calcite
(ΩC) and aragonite (ΩA), the two most common CaCO3 polymorphs that constitute the
shells and skeletons of many marine organisms (Mucci et al., 2017). Ocean acidification can
have deleterious effects on carbonate-secreting organisms (e.g. mollusks and crustaceans)
and certain physiological processes in non-calcifying organisms (Fabry et al., 2008; Kroeker
et al., 2013).

When ΩC or ΩA decrease below 1, water becomes undersaturated and corrosive to the skeletal
minerals of carbonate-secreting organisms. Note that if ΩA < 1, the waters may still be
supersaturated with respect to calcite since it is 50% more soluble than aragonite. However,
organisms have wide ranging responses to changes in ΩC and ΩA. For example, most corals
stop calcifying at ΩA < 2 (Bove et al., 2019; Kleypas et al., 2006), while other organisms
may have adapted to precipitate CaCO3 even when seawater is undersaturated with respect
to calcite (ΩC < 1 or ΩA < 0.65; e.g. Uthicke et al., 2016).
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We used ΩA to characterize ocean acidification in the bottom waters of the St. Lawrence. The
data come from the Department of Fisheries and Oceans’ (DFO) Atlantic Zone Monitoring
Program (AZMP; Galbraith et al., 2018) surveys and DFO’s multispecies surveys (Bourdages
et al., 2018) collected in August-September of 2017 (Starr and Chassé, 2019). ΩA, pH, and
dissolved oxygen (O2) were measured at 117 stations in the Estuary and Gulf of St. Lawrence
in the summer of 2018. The majority of sampling stations were located in the Southern Gulf
(n = 84), the Estuary and Northern Gulf (n = 33).

The carbonate speciation was determined through pH and total alkalinity (TA) measure-
ments. Samples for pH and TA were collected with no head space in 500 mL borosilicate
glass flasks, and 250 µL of saturated HgCl2 solution was added to each sample and processed
following the “Guide to best practices for Ocean CO2 Measurements” (Dickson et al., 2007).

pHT was determined spectrophotometrically using the indicator dye m-cresol purple (Sigma-
Aldrich). Absorbance was measured at 730, 578 and 434 nm before and after dye addition in
10 cm quartz cells thermostated at 25 ± 0.05oC (Dickson et al., 2007). A similar procedure
was carried out before each set of sample measurement using a TRIS (Tris (hydroxymethyl)
-aminomethane) buffer prepared at a practical salinity (S) of approximately 30 (Millero,
1986). Certified Reference Material (CRM) (supplied by Professor Andrew Dickson, Scripps
Institution of Oceanography, San Diego, USA) was used for quality control of our pH TRIS
buffer.

TA was determined by potentiometric titration in an open cell using an automated Radiome-
ter potentiometric titrator (Titrilab 865) and a pH combination electrode (pHC2001) in a
continuous titrant addition mode, an algorithm specifically designed for shallow end-point
detection (Dickson et al., 2007). The 0.1M HCl titrant in a solution of 0.6M NaCl was
calibrated using CRM provided by Professor Andrew G. Dickson.

The carbonate system parameters (including ΩA) were corrected for in situ pressure and
temperature using the algorithm CO2SYS (Lewis et al., 1998) with measured pH, TA, soluble
reactive phosphate and silicate concentrations as input parameters.

To account for the low sample size in the Northern Gulf, we used the correlation between O2

and CO2, which are linked through the stoichiometry of the respiration reaction in waters
that are isolated from the atmosphere (Mucci et al., 2011). Metabolic CO2 increases in water
through biotic processes such microbial respiration of organic matter (Mucci et al., 2011).
In deep waters, found in the Laurentian, Anticosti and Esquiman Channels, variations of ΩA

are largely governed by the addition of metabolic CO2, whereas, near the air-sea interface,
O2 is replenished faster than CO2 can escape (Zeebe and Wolf-Gladrow, 2001). The impact
of respiration on carbonate chemistry is highest in hypoxic regions, where metabolic CO2
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accumulates to high concentrations (Mucci et al., 2011).

We explored the correlation between ΩA and O2 in the data and found no significant cor-
relation at the scale of the whole St. Lawrence (p-value: 0.08; R2: 0.03). Nevertheless, a
correlation between ΩA and O2 exists in the Northern St. Lawrence (p-value: < 0.01; R2:
0.49), but not in the Southern St. Lawrence (p-value: 0.85; R2: < 0.01). Furthermore, the
correlation observed in the north between ΩA and O2 is especially strong when deep Channel
waters (Deep model: p-value: < 0.01; O2: 0.20; R2: 0.97) are separated from shallower re-
gions (Shallow model: p-value: < 0.01; O2: 0.07; R2: 0.96), with ΩA increasing more steeply
with increasing O2 in the deep Channels. This stronger correlation is likely caused by the
lack of gas exchange with the atmosphere or the surface mixed layer and the importance of
metabolic CO2 in deep waters, some of which may have mean ages of up to 20 years (Mucci
et al., 2011). In the Northern Gulf, the acidification trends with depth and distance from the
Cabot Strait along the Laurentian, Anticosti and Esquiman Channels due to the progressive
oxygen depletion and metabolic carbon dioxide accumulation (Mucci et al., 2011).

There are likely different dynamics at play in the Southern Gulf, such as waters with lowered
alkalinity and salinity caused by the surface, seaward-flowing Gaspé Current. These waters
have lower buffering capacities to decreasing pH and ΩA. Furthermore, the accumulation of
metabolic carbon dioxide produced by rapid oxic degradation of organic matter in the sandy
and permeable sediments of the Magdalen Shelf or in the Gaspé current could decrease ΩA

in the Southern Gulf (Starr and Chassé, personal communication).

We thus divided the and their analysis between the Southern and Northern St. Lawrence.
The St. Lawrence was divided along the 350m isobath on the southern slope of the Laurentian
Channel, from the Cabot Strait to the tip of the Gaspé Peninsula. The ΩA distribution in
the Southern St. Lawrence was modeled using the exponential kriging model.

We predicted ΩA using O2 for the Northern St. Lawrence. Whereas there are few published
datasets on ΩA in the St. Lawrence, there is a robust time-series on oxygen concentrations in
the water column available through the Department of Fisheries and Oceans’ (DFO) Atlantic
Zone Monitoring Program (AZMP; Galbraith et al., 2018). We used oxygen concentration
data collected between 2013 and 2017 (Blais et al., 2019) and interpolated oxygen % satura-
tion using cokriging with depth as a covariable, as done in Dutil et al. (2011). Bathymetric
data come from Dutil et al. (2011) and have a 100 km2 resolution. For more details, refer to
the hypoxia data layer description. The Deep model was used to transform O2 values to ΩA

in grid cells with depth > 350m, while the Shallow model was applied to cells with depth <
350m.

Based on the wide range of ΩA levels at which organisms are negatively affected (see above),
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we built an index of acidification stress (As) ranging between 0 and 1 that slowly increases
as ΩA decreases to ≈ 2, increases more rapidly close to ΩA = 1 and reaches its peak at ΩA

≈ 0.5:

As = −3
.99 + e−2∗ΩA

+ 3

Hence, the higher the acidification stress, the higher the index of acidification becomes.

1.1.2 Hypoxia

The data used to characterize hypoxia come from the Department of Fisheries and Oceans’
(DFO) Atlantic Zone Monitoring Program (AZMP; Galbraith et al., 2018) survey in late
spring and fall of 2013 to 2017, as well as from DFO’s annual multispecies surveys for the
northern Gulf in August and for the Magdalen Shallows in September. We provide a brief
summary of data and methods to describe hypoxia in this document. For more details, refer
to Blais et al. (2019).

Oxygen concentration were measured at every station using an oxygen probe (Sea-Bird
SBE43) mounted on a CTD. The probe is calibrated against seawater samples taken directly
from the Niskin bottles at every cast and analyzed by Winkler titration (see Blais et al., 2019
for calibration procedure). The data used is the last depth sampled on the CTD profile, which
is typically ~10m above the bottom. Note that this depth does not necessarily correspond to
the depth of the oxygen minimum. The oxygen minimum is typically found along the 27.25
isopycnal, often situated as much as 100 m above bottom in the Lower Estuary. Oxygen
concentration (µM L−1) is converted to oxygen saturation, taking into account the salinity
and temperature at the selected depth.

We interpolated oxygen saturation using cokriging with depth as a covariable, as done in
Dutil et al. (2011). Bathymetric data come from Dutil et al. (2011) and have a 100 km2

resolution. According to Diaz and Rosenberg (1995), severe hypoxia occurs when dissolved
oxygen falls below 2 ml L−1, to 62.5 µmol L−1 or ~20% saturation. This is considered as
the level necessary to maintain most animal life. Accordingly, Chabot and Claireaux (2008)
studied the effects of hypoxia on the energy budget of cod in the St. Lawrence and found
that behavioural effects began manifesting themselves below 70% oxygen saturation and that
survival becomes jeopardized below ~20% saturation. We used these observations to create
an index of hypoxia using an inverted logistic curve that slowly increases below 70% oxygen
saturation and increases acutely as it reaches its peak intensity between 20 and 30% oxygen
saturation:
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Hs = −1
.99 + 200 ∗ e−0.15∗O2

+ 1

Hence, the higher the hypoxic stress, the higher the index of hypoxia becomes.

1.1.3 Bottom-water temperature anomalies

The data used to characterize bottom-water temperature anomalies come from the Depart-
ment of Fisheries and Oceans’ (DFO) Atlantic Zone Monitoring Program (AZMP; Galbraith
et al., 2018). We provide a brief summary of data and methods to characterize the bottom-
water temperature climatology and anomalies in this document. For more details, refer to
Galbraith et al. (2018).

Bottom-water temperatures are interpolated in the Gulf using conductivity-temperature-
depth (CTD) sampling performed annually through DFO’s multispecies surveys for the
northern Gulf in August and for the Magdalen Shallows in September. Using this sam-
pling survey, temperatures are horizontally interpolated at each 1 m depth layer on a 2 km
resolution grid. Bottom-water temperatures are then extracted by using a bathymetry layer
from the Canadian Hydrographic Survey (Dutil et al., 2012) and selecting the interpolated
temperature from the layer corresponding to the bottom depth at each grid point.

We used temperature anomalies, i.e. deviations from long-term normal conditions between
1981 and 2010, to measure an annual index of stress associated with extreme temperatures
between 2013 and 2017. Temperature anomalies were calculated using the difference between
grid cell values with 1981-2010 climatological averages. Anomaly time series were normalized
by their standard deviation (SD) to allow comparisons between areas of the St. Lawrence with
different temperature ranges. For example, temperatures observed in deep channels are less
variable than in shallower regions of the St. Lawrence. Hence, if anomalies were expressed in
degrees Celsius, it would underestimate the relative importance of anomalies in deep channels
when compared to shallower regions. Grid cells whose monthly value exceeded ±0.5 standard
deviation (SD) from the long-term average were considered as anomalous (Galbraith et al.,
2018). Outliers in the data were defined as those that fell beyond the interquartile range *
3, identified as extreme outliers by Tukey (1977). Outlier values were capped to correspond
to the 5th and 95th percentile values. Anomalies were divided into positive and negative
anomalies and the absolute value of anomalies were used as an indicator of the intensity
of bottom-water temperature anomalies. The mean anomaly intensity between 2013 and
2017 for each grid cell was used to generate the final index of bottom-water temperature
anomalies.
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1.1.4 Surface-water temperature anomalies

The data used to characterize surface-water temperature anomalies come from the Depart-
ment of Fisheries and Oceans’ (DFO) Atlantic Zone Monitoring Program (AZMP; Galbraith
et al., 2018). We provide a brief summary of data and methods to characterize the surface-
water temperature climatology and anomalies in this document. For more details, refer to
Galbraith et al. (2018).

The surface-water layer is characterized using sea surface-water temperature (SST) monthly
composites from Advanced Very High Resolution Radiometer (AVHRR) satellite images
obtained from the National Oceanic and Atmospheric Administration (NOAA) and European
Organization for the Exploitation of Meteorological Satellites (EUMETSAT). Images used
are from DFO’s Maurice Lamontagne Institute at a 1 km resolution from 1985-2013 and
from DFO’s Bedford Institute of Oceanography (BIO) Operational Remote Sensing group
at a 1.5 km resolution since 2014. Monthly anomalies were constructed as the difference
between monthly averages and the 1985-2010 climatological mean for each month.

Surface-water temperature anomalies were characterized following the same method used for
bottom-water temperature anomalies. Only the months of May to November were included
to avoid biases associated with the presence of ice cover. Monthly anomalies from May to
November values were summed to obtain an indicator of annual surface-water temperature
anomaly intensity in each grid cell. The mean anomaly intensity between 2013 and 2017 for
each grid cell was used to generate the final index of surface-water temperature anomalies.

1.1.5 Sea-level rise

The data used to characterize sea-level rise risk come from the global cumulative impacts
assessment on habitats (Halpern et al., 2015b, 2008) and available on the NCEAS online
data repository (Halpern et al., 2015a). We provide a brief summary of data and methods
in this document. For more details, refer to Halpern et al. (2015a).

Sea-level rise was characterized by Nicholls and Cazenave (2010) using NASA’s satellite al-
timetry data (Topex/Poseidon, Jason-1&2, GFO, ERS-1&2, and Envisat missions) and avail-
able at http://www.aviso.altimetry.fr/en/data/products/ocean-indicatorsproducts/mean-
sea-level/products-images.html

The rate of sea-level rise (mm/year) was measured between 1992 and 2012 and transformed
as a net change value (mm) by multiplying by the number of years considered. Only positive
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values were selected under the assumption that only positive sea-level rise is likely to cause
environmental stress.

For the St. Lawrence, we overlaid the raw data layers (Halpern et al., 2015a) with our 1 km2

grid cell using weighted area average.

1.2 Coastal

1.2.1 Aquaculture

As aquaculture sites are managed at the provincial level in the St. Lawrence, data on aqua-
culture sites come from various sources (AAF, 2016; DFO, 2016a; FA, 2016; FFA, 2016;
MAPAQ, 2016). Invertebrates aquaculture is especially important in the southern and west-
ern Gulf. Fish and algae aquaculture, on the other hand, remains marginal. Considering
this, we only included invertebrates aquaculture for the aquaculture driver layer. However,
if fish or algae farming were to become more important, these drivers should be incorporated
in future analyses as individual layers, as impacts vary between types of aquaculture.

Aquaculture activities are highly localized and potential effects do not or rarely extend
beyond the location of the farms. We therefore only considered the location of sites to
characterize the distribution of this driver. We were unable to characterize site production
in terms of biomass farmed, which could provide an indication of the intensity of aquaculture
activities. As such, we considered aquaculture as binary presence-absence data.

1.2.2 Coastal development

Terrestrial stable lights at night mostly represent light from human settlements and industrial
sites with electricity. We thus used lights at night as a proxy of coastal infrastructure
development.

The data come from the Nighttime Lights Time Series. Nighttime light products are compiled
by the Earth Observation Group at the National Oceanic and Atmospheric Administration’s
(NOAA) National Centers for Environmental Information (NCEI). They use globally avail-
able nighttime data obtained from the Visible Infrared Imaging Radiometer Suite (VIIRS)
Day/Night Band (DNB) of the Defense Meteorological Satellite Program (DMSP) to charac-
terize global average radiance (nanoWatts cm−2 sr−1) composite images at a 15 arc-second
(~200 m) resolution.
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We used the annual Version 1 Nighttime VIIRS DNB composites between 2015 and 2016
(Earth observation group, 2019) to characterize coastal development in coastal areas of the
St. Lawrence. As the effects of coastal development are likely acute in its direct vicinity, we
extracted average radiance values using a 2 km buffer around grid cells within 2 km of the
coast. We used a weighted area average to extract the radiance values.

1.2.3 Direct human impact

As in Halpern et al. (2008) and Halpern et al. (2015a), we used the sum of coastal popula-
tions as a proxy of direct human impact. We used Statistics Canada dissemination area pop-
ulation count from the 2016 census to obtain coastal population size around the St. Lawrence
(Statistics-Canada, 2017). Dissemination areas are the smallest standard geographic area in
which census data are disseminated. They combine to cover all of Canada and are highly
variable in shapes and sizes. For example, their sizes range from 0.0003 to over 44000 km2

in our study area. The census provides population count within the boundary of each dis-
semination area, which we used to evaluate total coastal population.

As the effects of direct human impacts are likely acute mostly in coastal areas we calculated
total population in grid cells within 2 km of the coast. Total population was measured
in a 10 km buffer around each coastal cell. The total population in each buffer was the
sum of intersecting dissemination areas divided by the intersection area between buffers and
dissemination areas:

DHIj =
nj∑

k=1
Pk ∗ Aj,k

Atot, k

where j is a buffered grid cell, k is a dissemination area intersecting j, P is the population
in k, A is the area of the k overlapping with j and Atot is the total area of k. This approach
was favoured to reduce the effects of very large dissemination areas overlapping with buffers
on a very small percentage of their total area.

1.2.4 Inorganic pollution

The data used to characterize inorganic pollution come from the global cumulative impacts
assessment on habitats (Halpern et al., 2015b, 2008) and available on the NCEAS online
data repository (Halpern et al., 2015a). We provide a brief summary of data and methods
in this document. For more details, refer to Halpern et al. (2015a).
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Inorganic pollution was modeled using impervious surface area (i.e. artificial surfaces such
as paved roads) under the assumption that most of this pollution source comes from urban
runoff. Inorganic pollution originating from point-sources or in areas lacking paved roads is
therefore not captured by this layer. The data obtained was aggregated at the watershed
scale. Spread into coastal and marine environments was modeled using a diffusive plume
model from each watershed pourpoints (e.g. river mouths).

For the St. Lawrence, we overlaid the raw data layers (Halpern et al., 2015a) with our 1 km2

grid cell using weighted area average.

1.2.5 Nutrient pollution

The data used to characterize nutrient pollution come from the global cumulative impacts
assessment on habitats (Halpern et al., 2015b, 2008) and available on the NCEAS online
data repository (Halpern et al., 2015a). We provide a brief summary of data and methods
in this document. For more details, refer to Halpern et al. (2015a).

Annual fertilizer use in tonnes (t) was used as a proxy of nutrient pollution. The data used
came from the Food and Agriculture Organization of the United Nations (FAO). Gaps in data
were modeled using a linear regression between fertilizer and pesticides or agricultural gross
domestic product (GDP). Dasymetric maps were then used to distribute fertilizer data over
the landscape using 2009 data from the Moderate Resolution Imaging Spectroradiometer
(MODIS) at ~500 m resolution and aggregated to watersheds. Diffusive plume models from
each watershed pourpoint (e.g. river mouths) were then used to model the distribution and
intensity of nutrient pollution in coastal and marine environments.

For the St. Lawrence, we overlaid the raw data layers (Halpern et al., 2015a) with our 1 km2

grid cell using weighted area average.

1.2.6 Organic pollution

The data used to characterize organic pollution come from the global cumulative impacts
assessment on habitats (Halpern et al., 2015b, 2008) and available on the NCEAS online
data repository (Halpern et al., 2015a). We provide a brief summary of data and methods
in this document. For more details, refer to Halpern et al. (2015a).

Annual pesticide use in tonnes (t) was used as a proxy of organic pollution. The data used
came from the FAO and gaps in data were modeled using a linear regression between pesti-
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cides and fertilizers or agricultural GDP. The same methodology as that used to characterized
nutrient pollution was then applied to organic pollution.

For the St. Lawrence, we overlaid the raw data layers (Halpern et al., 2015a) with our 1 km2

grid cell using weighted area average.

1.2.7 Toxic algae

The data we use to describe the risk of toxic algae come from an expert based map de-
lineating the areas where coastal areas are at risk from five different toxins (Bates et al.,
2019). The map presents coastal areas at risk from 5 different toxins: 1) paralytic shellfish
poisoning (PSP) toxins from the regular presence of the dinoflagellate Alexandrium catenella
(previously Alexandrium tamarense) at high concentrations, 2) amnesic shellfish poisoning
(ASP) toxins from domoic acid 3) diarrhetic shellfish poisoning (DSP) toxins, 4) spirolides
and 5) pectenotoxins, two toxins produced by dinoflagellates occurring in the St. Lawrence.

The information provided on this expert map on the 5 toxins (Bates et al., 2019). was
georeferenced and transformed as vectorized objects. We calculated a toxic algae risk (T )
index for each cell (x) in the 1 km2 study grid. For each toxin (t), a value of 1 was attributed
to all grid cells overlapping with areas identified at risk on the expert map and a value of
0.5 for grid cells overlapping with areas where ASP and DSP toxins were observed without
exceeding legal thresholds. The value for all 5 toxins was them summed for all grid cells:

TAi,x =
5∑

i=1
ix

1.3 Fisheries

The impacts of fisheries activities in the St. Lawrence are evaluated using DFO’s fisheries
logbooks program (DFO, 2016b). While logbooks are not mandatory for all fisheries in the
St. Lawrence, they still provide a very thorough overview of the spatial distribution and
intensity of fishing activities. The data we used span 6 years from 2010 to 2015 and detail
218323 fishing events (36387 ± 3147 fishing events per year). There were 31 targeted species
and a total of 53 species caught in the dataset.

Fishing activities are performed using a variety of gear types: trap, trawl, dredge, driftnet,
hand line, longline, scuba diving, purse seine, seine, beach seine and jig fishing. Intensity
of fishing activities was divided among gear types and based on their respective types of
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environmental impacts (Table S2). For example, traps and trawls have very different effects
on a system. Gear classification was done using the classification presented in Halpern et
al. (2008) and Halpern et al. (2015a) and is broken down into 5 distinct classes: demersal
destructive (DD), demersal, non-destructive, low-bycatch (DNL), demersal, non-destructive,
high-bycatch (DNH), pelagic, low-bycatch (PLB) and pelagic, high-bycatch (PHB). This
categorization divides the fisheries data into 5 distinct driver layers characterizing fishing
activities.

Gear types can be further classified into fixed or mobile engines based on their mobility. We
used these two mobility classes to generate a buffer of impact around each fishing activity
coordinates to consider potential spatial uncertainty associated with locations, the fact that
mobile engines can be tracted over several kilometers during fishing activities, and because
we do not have the beginning and end points of mobile fishing events. Buffer sizes for fixed
and mobile engine was of 200 and 2000 meters, respectively.

Table S2. Classification of gear types in the fisheries dataset based on their environmental
impact and mobility

Gear type (EN) Classification Mobility

Trap DNH Fixed
Trawl DD Mobile
Dredge DD Mobile
Driftnet PHB Fixed
Hand lines PLB Fixed
Longline PHB Fixed
Scuba diving DNL Fixed
Purse seine PLB Fixed
Seine DNH Fixed
Beach seine DNH Fixed
Trap DNH Fixed
Jig fishing PLB Fixed

To characterize the intensity of fishing activities (FI), we used a biomass yield density index.
We multiplied the total annual biomass captured in each grid cell j, regardless of species, by
the proportion of fishing area in each grid cell:
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FIj =
nj∑

k=1
Btot,k ∗ Aj,k

Atot,k

where j is a grid cell, k is a fishing event, Btot is the total biomass of a fishing event k, A
is the area of a fishing event k overlapping a cell j and Atot is the total area of the fishing
event k. This formula gives an intensity measurement in biomass units, which is kg in our
case. Since we measure the intensity within a 1 km2 grid cell, the intensity evaluation is in
kg ∗ km−2. This metric distributes the biomass captured within each grid cell as a function
of overlapping fishing area and provides an overview of how impacted each grid cell is in
terms of extracted biomass.

1.4 Marine traffic

1.4.1 Shipping

The data used to characterize shipping come from the global cumulative impacts assessment
on habitats (Halpern et al., 2015b, 2008) and available on the NCEAS online data repository
(Halpern et al., 2015a). We provide a brief summary of data and methods in this document.
For more details, refer to Halpern et al. (2015a).

Two data sources were used to characterize shipping. The first set of data is gathered as part
of the World Meteorological Organization Voluntary Observing Ships’ (VOS) scheme. Ships
participating in the program gather meteorological data along with observation location as
part of an open-ocean climate dataset. The data spans 20 years and annually covers 10-20%
of ships worldwide. Data used spanned 2003 to 2011.

The second set of data comes from the Automatic Identification System (AIS), an initiative
launched in 2002 that sought to improve marine safety by providing mariners with real-
time vessel traffic. Through the International Maritime Organization SOLAS agreement, all
vessels of over 300 gross tonnage on international voyages and those carrying passengers are
now required to be equipped with AIS transceivers. These transceivers use Global Positioning
System technology to locate vessels every 10 minutes. The data used were from November
2010 to December 2011. Data used come mostly from vessels that move globally (i.e. cargo,
tanker and passenger), as they are required to carry AIS transceivers, but also include data
from fishing, high-speed, pleasure and support classes. Shipping intensity was evaluated as
the number of fishing tracks at a 0.1 decimal degrees resolution. For more details on data
and methods used, consult (Walbridge, 2013).
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For the St. Lawrence, we overlaid the raw data layers (Halpern et al., 2015a) with our 1 km2

grid cell using weighted area average.

1.4.2 Invasive species

The data used to characterize invasive species risk come from the global cumulative impacts
assessment on habitats (Halpern et al., 2015b, 2008) and available on the NCEAS online
data repository (Halpern et al., 2015a). We provide a brief summary of data and methods
in this document. For more details, refer to supplementary materials provided in Halpern et
al. (2008) and Halpern et al. (2015a).

Cargo volume was used as a proxy of invasion risk under the assumption that risk of invasion
is proportional to tonnes of goods transferred through ports. Cargo throughput in metric
tonnes for the year 2011 was accessed through a variety of sources (see supplementary ma-
terial in Halpern et al., 2015a for more details) and cross-matched with entries in the World
Port Index database (WPI; available from the National Geospatial-Intelligence Agency). A
gap-filling procedure using linear regression and sets of predictors related to port volume
and available in the WPI dataset was then applied to the WPI dataset to predict missing
cargo volume entries. Finally, volume data was distributed in marine environments adja-
cent to ports using a diffusive plume model with an exponential decay function that set the
maximum spread distance to approximately 1000 km. The plume model was then clipped
to areas less than 60 m deep, as invasive species are more likely to invade shallow areas.

For the St. Lawrence, we overlaid the raw data layers (Halpern et al., 2015a) with our 1 km2

grid cell using weighted area average.

1.4.3 Marine pollution

The data used to characterize marine pollution risk come from the global cumulative impacts
assessment on habitats (Halpern et al., 2015b, 2008) and available on the NCEAS online data
repository (Halpern et al., 2015a). Marine pollution was considered to be mainly driver by
the shipping industry. As such, the driver layer was constructed by combining the shipping
(i.e. shipping lanes) and invasive species (i.e. cargo volume) layers. invasive. For more
details, refer to supplementary materials provided in Halpern et al. (2008) and Halpern et
al. (2015a).

For the St. Lawrence, we overlaid the raw data layers (Halpern et al., 2015a) with our 1 km2

grid cell using weighted area average.

14



2 Driver intensity and distribution

We evaluated the frequency distribution of each drivers to verify whether data should be
transformed (Figure S1). In light of this, we log-transformed the following driver layers

• Coastal development
• Direct human impact
• All fisheries data
• Hypoxia
• Inorganic pollution
• Invasive species
• Nutrient pollution
• Organic pollution
• Bottom-water temperature anomalies
• Shipping

To allow for relative intensity comparison, all driver layers were subsequently normalized
between 0 and 1 using the 99th quantile to further control for extreme values (Figure S2).
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Figure 1: Frequency distribution of the untransformed data for all driver layers.
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Figure 2: Distribution and intensity of transformed and normalized drivers in the Estuary
and Gulf of St. Lawrence available on *eDrivers*.
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3 Cumulative exposure

Figure 3: Frequency distribution of cumulative exposure (i.e. sum of normalized driver in-
tensity in each grid cell) and percent contribution of each driver to the frequency distribution
of cumulative exposure in the Estuary and Gulf of St. Lawrence.
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4 Cumulative exposure profiles

4.1 Clustering

Figure 4: Validation procedure for the k-medoids and k-means clustering algorithms based
on the number of cluster that maximizes average silhouette width (upper panels; Kaufman
and Rousseeuw, 1990) and minimizes the total within-cluster sum of squares (WSS; lower
panels).
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4.2 Inter-cluster dissimilarity

Figure 5: Evaluation of inter-cluster dissimilarity using a similarity percentage analysis
(SIMPER) with Manhattan distance (Clarke, 1993). The figure diagonal presents the dis-
tribution of the 6 clusters identified using the k-medoids clustering algorithm. The lower
triangle shows all combinations of inter-cluster dissimilarity with circular barplots showing
the percent contribution to total dissimilarity of each driver and with the total inter-cluster
dissimilarity in the center of the barplots. The upper triangle shows the average relative
intensity of each driver for all driver combinations, with barplots to the left and the right
representing the row and columns clusters, respectively.
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4.3 Intra-cluster similarity

Figure 6: Evaluation of intra-cluster similarity using the Manhattan distance transformed
to a similarity index. The distribution of the 6 clusters is presented along with circular
barplots showing the percent contribution to total similarity of each driver and with the
total intra-cluster similarity in the center of the barplots.
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