

# Supplementary Material

# Viscoelastic and adhesion properties of new poly(ether-urethane) pressure sensitive adhesives

## Mónica Fuensanta, José Miguel Martín-Martínez $^{\ast}$

Adhesion and Adhesives Laboratory, Department Inorganic Chemistry, University of Alicante, 03080 Alicante, Spain

## Content

| 1 | Characterization of the polyether polyols |                                                                           |    |  |  |  |
|---|-------------------------------------------|---------------------------------------------------------------------------|----|--|--|--|
|   | 1.1                                       | ATR-IR spectroscopy                                                       | .2 |  |  |  |
|   | 1.2                                       | Differential scanning calorimetry (DSC)                                   | .3 |  |  |  |
|   | 1.3                                       | Thermal gravimetric analysis (TGA)                                        | .4 |  |  |  |
| 2 | Influ                                     | nence of the NCO/OH ratio on the properties of the poly(ether-urethane)s  | .5 |  |  |  |
|   | 2.1                                       | Plate-plate rheology                                                      | .5 |  |  |  |
| 3 | Influ                                     | nence of the PTMEG content on the properties of the poly(ether-urethane)s | .6 |  |  |  |
|   | 3.1                                       | ATR-IR spectroscopy                                                       | .6 |  |  |  |
|   | 3.2                                       | Thermal gravimetric analysis (TGA)                                        | .7 |  |  |  |
|   | 3.3                                       | Plate-plate rheology                                                      | .8 |  |  |  |

## **1** Characterization of the polyether polyols

## 1.1 ATR-IR spectroscopy



Figure S-1. ATR-IR spectra of PPG and PTMEG polyols.

Table S-1. Assignment of the main IR bands in the ATR-IR spectra of PPG and PTMEG polyols.

| Assignment                              | Wavenumber (cm <sup>-1</sup> ) |            |  |  |
|-----------------------------------------|--------------------------------|------------|--|--|
| Assignment                              | PPG                            | PTMEG      |  |  |
| O–H stretching                          | 3476                           | 3467       |  |  |
| Asymmetric and symmetric C-H stretching | 2970, 2930, 2837               | 2941, 2862 |  |  |
| C-H bending                             | 1453                           | 1460       |  |  |
| C-H rocking                             | 1373                           | 1371       |  |  |
| C–O stretching                          | 1262                           | 1249       |  |  |
| C–O–C stretching                        | 1093, 1013, 927                | 1101, 995  |  |  |

#### **1.2** Differential scanning calorimetry (DSC)



Figure S-2. DSC traces of PPG and PTMEG polyols. Second DSC heating run.



**1.3** Thermal gravimetric analysis (TGA)

Figure S-3. TGA and DTGA thermograms of PPG and PTMEG polyols.

Table S-2. Some thermal parameters obtained from the TGA thermograms of PPG and PTMEG polyols.

| D-11   | T5% (°C) | T50% (°C) | 1 <sup>st</sup> degradation |                              | 2 <sup>nd</sup> degradation |                              | Residue |
|--------|----------|-----------|-----------------------------|------------------------------|-----------------------------|------------------------------|---------|
| Polyol |          |           | T₁(°C)                      | Weight loss <sub>1</sub> (%) | $T_2(^{\circ}C)$            | Weight loss <sub>2</sub> (%) | (wt%)   |
| PPG    | 258      | 340       | 350                         | 99                           |                             |                              | 1       |
| PTMEG  | 321      | 409       | 280                         | 4                            | 417                         | 95                           | 1       |

## 2 Influence of the NCO/OH ratio on the properties of the poly(ether-urethane)s

### 2.1 Plate-plate rheology



Figure S-4. Variation of the storage (G<sup> $\prime$ </sup>) and loss (G<sup> $\prime$ </sup>) moduli as a function of the temperature for 1.05-50PPG50PTMEG.

**3** Influence of the PTMEG content on the properties of the poly(ether-urethane)s



#### 3.1 ATR-IR spectroscopy

Figure S-5. ATR-IR spectra of the TPUs made with PPG + PTMEG mixtures. NCO/OH ratio = 1.20.



Figure S-6. Curve fitting of the carbonyl region of the ATR-IR spectrum of 1.20-75PPG25PTMEG.

## 3.2 Thermal gravimetric analysis (TGA)



Figure S-7. Variation of the weight as a function of the temperature for TPUs synthesized with PPG + PTMEG mixtures. NCO/OH ratio = 1.20.

#### 3.3 Plate-plate rheology



Figure S-8. Variation of the storage modulus (G<sup> $\gamma$ </sup>) as a function of the temperature for TPUs synthesized with PPG + PTMEG mixtures. NCO/OH ratio = 1.20.



Figure S-9. Variation of the storage (G<sup> $\gamma$ </sup>) and loss (G<sup> $\gamma$ </sup>) moduli as a function of the temperature of 1.20-75PPG25PTMEG. NCO/OH ratio = 1.20.