

FIGURE S1 | Promoter of IbBT4 showing different cis-acting regulatory elements associated with abiotic stress responses.

FIGURE S2 \mid Expression analysis of $I b B T 4$ in different tissues of Xushu55-2. The data are presented as the means \pm SEs $(\mathrm{n}=3)$. The different capital letters indicate a significant difference at $P<0.01$ according to Student's t-test. L: Leaf; S: Stem; HR: Hairy root; FR: Fibrous root; SR:

Storage root.

FIGURE S3 | Expression analysis of IbBT4 in transgenic Arabidopsis plants. Atactin was used as an internal control. The data are presented as the means \pm SEs $(\mathrm{n}=3)$. ** indicates a significant difference from L1 at $P<0.01$ according to Student's t-test.

FIGURE S4 | Transactivation activity assay of IbBT4 in yeast. (A) Transformed yeast cells harbouring different expression vectors were drawn onto SD/-Trp media. pBD (-) and pGAL4 (+) were used as negative and positive controls, respectively. (B) Transformed yeast cells harbouring different expression vectors were drawn onto SD/-Trp/-His media supplemented with X- $\alpha-\mathrm{Gal}$. pBD $(-)$ and pGAL4 (+) were used as negative and positive controls, respectively.

FIGURE S5 | Analysis of the function of IbBT4 in the ABA signalling pathway. (A) Expression analysis of $I b B T 4$ in in vitro-grown Xushu55-2 plants after different time points (h) in response to $100 \mu \mathrm{M} \mathrm{ABA}$. (B) Responses of transgenic Arabidopsis and WT seeds sown on $1 / 2 \mathrm{MS}$ media with $0,0.1,0.2$ and $0.3 \mu \mathrm{M} \mathrm{ABA}$ for 1 week. (C) Responses of transgenic Arabidopsis and WT seedlings cultured for 2 weeks on $1 / 2 \mathrm{MS}$ media supplemented with $1 \mu \mathrm{M}$ ABA. (D) ABA content in the leaves of transgenic Arabidopsis and WT plants grown for 2 weeks under normal conditions followed by 2 weeks of drought stress and for 4 weeks under normal conditions (control), respectively. (E-F) Transcript levels of ABA-related genes in the leaves of transgenic Arabidopsis and WT plants grown for 2 weeks under normal conditions followed by 2 weeks of drought stress and for 4 weeks under normal conditions (control), respectively. The data are presented as the means \pm SEs $(\mathrm{n}=3) .{ }^{* *}$ indicates a significant difference at $P<0.01$ according to Student's t-test.

Table S1 Primers used in this study

Primer name	Primer sequence ($5^{\prime}-3{ }^{\prime}$)
Primers for $5^{\prime} / 3^{\prime}$ RACE	
5GSP1	CGAAGACACACCGAGAACAC
5GSP2	GCGAACAAAAATGGAGACAG
3GSP1	CGAAAACTTTAGGCAGCAGG
3GSP2	AGTCCGTTTCCTTCACCGAA
Primers for 5'- promoter region	
GW1	TTACTCTGCTCCGACGATGA
GW2	CATCATAGCGGGAAGAATACA
Pro-F	CTCAACTCCCAAGTCCCATC
Pro-R	CTTTCCGATCCTTAAATTTCTGC
Primers for vector construction	
IbBT4-F	ATGGGTAAGCTTTCGGATTC
IbBT4-R	TCATGTTGCTTCAACTGAGAAAAAT
IbBT4-DW-F (Pac I)	CCTTAATTAAATGGGTAAGCTTTCGGATTC
IbBT4-DW-R (Asc I)	GGCGCGCCATGTTGCTTCAACTGAGAAAAAT
$I b B T 4-\mathrm{OS}-\mathrm{F}(X b a \mathrm{I})$	GCTCTAGAATGGGTAAGCTTTCGGATTC
IbBT4-OS-R(Pst I)	AACTGCAGTGTTGCTTCAACTGAGAAAAAT
pBD-F-NdeI	GGAATTCATGGGTAAGCTTTCGGATTC
pBD-R-SalI	AACTGCAGTCATGTTGCTTCAACTGAGAAAAAT
$I b B E E-A D-F(N d e ~ I ~) ~$	GGAATTCGAATTCATGCTTCGCTGCGCGC
	CGGGATCCTCACTTTCCCAACCTTGCAGC
$A t B E E-A D-\mathrm{F}(N d e \mathrm{I})$	GGAATTCGAATTCATGGACTTGTCTGTACTTGATA
$A t B E E-\mathrm{AD}-\mathrm{F}(B a m \mathrm{H}$ I $)$	CGGGATCCTTACTTGAGGCTGAAGAAATTGG
CE-IbBEE-F(Asc I)	GGCGCGCCATGCTTCGCTGCGCGC
CE-IbBEE-R ($K p n$ I)	GGGGTACCCTTTCCCAACCTTGCAGC
CE-AtBEE-F(Asc I)	GGCGCGCCATGGACTTGTCTGTACTTGATAGG
CE-AtBEE-R (Kpn I)	GGGGTACCCTTGAGGCTGAAGAAATTGG
NE-IbBT4-F(Asc I)	GGCGCGCCATGGGTAAGCTTTCGGATTC
NE-IbBT4-R(Kpn I)	GGGGTACCTGTTGCTTCAACTGAGAAAAAT
Primers for transformant identification	
pSuper-1300-F	GACGCCATTTCGCCTTTTCA

Primers for qRT-PCR

Ibactin-F
Ibactin-R
IbBT4-F
IbBT4-R
Atactin- F
Atactin-R
AtDWF4-F
AtDWF4-R
AtCPD-F
AtCPD-R
AtDET2-F
AtDET2-R
AtROT3-F
AtROT3-R
AtCYP90D1-F
AtCYP90D1-R
AtBR6oxl-F
AtBR6oxl-R
AtBR6ox2-F
AtBR6ox2-R
AtBRII-F
AtBRII-R
AtBIN2-F
AtBIN2-R
AtBZR1-F
AtBZR1-R
AtBESI-F
AtBES1-F
AtBR6oxl-F
AtBR6oxl-R
AtBR6ox2-F

AGCAGCATGAAGATTAAGGTTGTAGCAC

TGGAAAATTAGAAGCACTTCCTGTGAAC
CCGATTATGAAAGCCATGTTGAG
TACGAATGCGACAGCACCAGTAA
GCACCCTGTTCTTCTTACCGA
AGTAAGGTCACGTCCAGCAAGG

CCGTACACCGCCACAA
GAATCTATTAAGTCCAGCATCAG
GCTGATCGGAGCTTACAAAAC
AAATCGTCGGTTCACCAAAA
CACCAACCGCCGTCCTT
CGGTGGAGATACGGTGGGAC
AACTTCATCGCTTGTGGTTATT
TTGGTGTCCCTATTATGTTCGT
TTTATCATCATCGTCATCTTCA
TTTGGTCCGTGACTCTGG
AAACCAAAGACTCCGATACGG
CGATTGTGGGTAACCAGGAA
ACCAAAGACTAAGATATGGGAGT
AAGCATAGATTGCGGGTAA
CTCTCCTGTCTCTCACCGGA
GCACCGGAGATTGAATTCGC
AGATGCCTGCTGCTGTAGTTG
CCACGGTTTCTCCAGTCTCC
ATGGTGGCATTCCTTCTTCTC
GCAACGGTTTCGGGTTCTT
CCCAAACCATTGCCTACTTG
GGTGCAGACACCGCATAAAA
AAACCAAAGACTCCGATACGG
CGATTGTGGGTAACCAGGAA
ACCAAAGACTAAGATATGGGAGT

AtBR6ox2-R	AAGCATAGATTGCGGGTAA
$A t S O D-\mathrm{F}$	ATGAGAAGTTCTATGAAGAG
$A t S O D-\mathrm{R}$	GTCTTTATGTAATCTGGT
$A t G P X-\mathrm{F}$	ATGGCGACGAAGGAACCAG
$A t G P X-\mathrm{R}$	ATCGCCGAAGATTCCCCATTT
$A t P O D-\mathrm{F}$	TCCGGGAGCACACCATTGG
$A t P O D-\mathrm{R}$	TGGTCGGAATTCAACAG
$A t C A T-\mathrm{F}$	GCAACTACCCCCGAGTGGAAA
$A t C A T-\mathrm{R}$	TGTTCAGAACCAAGCGACCA
$A t N C E D-\mathrm{F}$	AGAAGCAGGGCAAATAAACAAG
$A t N C E D-\mathrm{R}$	CCGTCGCCGTACCTAAACTC
$A t A B A l-\mathrm{F}$	TACTTGGGGTAAAGGGCGTG
$A t A B A l-\mathrm{R}$	CAAAGCACCCTGCAATAACT
$I b B E E-\mathrm{F}$	GAGGAAGATAAGAAATGGGAAGGAGA
$I b B E E-\mathrm{R}$	ATGGCTGTCGGTGGCTTGG

