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Materials and Methods 

Chemicals and Reagents 

RNA purification reagent (RNAiso Plus), LA Taq DNA polymerase, restriction endonucleases, T4 

DNA ligase, and protein marker were obtained from TaKaRa Bio Co. Ltd. (Dalian, China). 

mRNA reverse transcriptase was purchased from TransGen Biotech Co. Ltd. (Beijing, China). 

Polygalacturonic acid (PGA, de-esterified), citrus pectin (＜26% esterification), apple pectin 

(50–75% esterification), trigalacturonic acid and D-galacturonic acid were obtained from 

Sigma-Aldrich Co. Ltd. (Saint Louis, MO, USA). Unless otherwise stated, all other chemicals 

were of analytical grade and commercially available. 

Gene Cloning and Heterologous Expression 

Total RNA extraction and mRNA reverse transcription were carried out using a previously 

reported method (Cheng et al., 2017). Since the genomic sequences of P. oxalicum strains are 

highly similar (Xian et al., 2016), specific primers PoxaEnPG28BF 

(5-′GACCTACGTATCACCCGTCGCTGAGCCG-3′) (SnaB I site was underlined) and 

PoxaEnPG28BR (5-′CGACCTAGGTCAAGAGCACTTGGTCACACTGG-3′) (Avr II site was 

underlined) were designed to amplify the cDNA fragment without the signal peptide-encoding 

region. The amplified product was digested by SnaB I and Avr II and inserted into the vector 

pPIC9k, and the generated plasmid was named as pPIC9K-PoxaEnPG28B. Plasmid 

pPIC9K-PoxaEnPG28B was linearized by Sac I and transformed into the genome of P. pastoris 

GS115 for secreted expression using the LiCl method according to the manual instructions 

supplied by Invitrogen Co. Ltd. The recombinant strains were screened using the method 

described previously (Cheng et al., 2017), and the strain expressing the highest PGase activity in 
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the culture broth was chosen for further research. 

Purification of the Recombinant Protein 

After three days of inducement, the culture broth of the recombinant P. pastoris GS115 was 

centrifuged (11,325×g, for 10 min, at 4 °C), and the supernatant was filtrated through a 

membrane (size of 0.22 μm) followed by concentration using an ultrafiltration membrane with a 

molecular weight cut-off of 10 kDa (Millipore, Ireland). The concentrated supernatant was 

applied to size-exclusion chromatography using a HiLoad 16/600 superdex 75 column (GE Co., 

Ltd., Uppsala, Sweden) and was eluted by 20 mM KH2PO4-K2HPO4 buffer (pH 6.0) with a flow 

rate of 1.0 mL/min. The fractions exhibiting PGase activity were applied to sodium dodecyl 

sulphate polyacrylamide gel electrophoresis (SDS-PAGE), with a 5% (w/v) stacking gel and a 

10% (w/v) separating gel (Laemmli, 1970). The protein concentration was determined using the 

Bradford method, with bovine serum albumin protein as standard (Bradford, 1976). 

Biochemical Properties of the Purified Endo-PGase PoxaEnPG28B 

The optimal pH of the purified endo-PGase was assayed by determining the enzyme activity at a 

pH range of 3.0–7.0 and at 50 °C. The optimal temperature of the purified endo-PGase was 

assayed by determining the enzyme activity at 25–80 °C and at an optimal pH of 5.0. The highest 

enzyme activity was defined as 100%, and other enzyme activities were calculated as relative 

values. 

The pH stability of the purified endo-PGase was assayed by incubating the enzyme in buffers 

with different pH values (0.1 M citric acid-Na2HPO4 for pH 3.0–7.0 and 0.1 M Tris-HCl for pH 

7.0–9.0) at 25 °C for 24 h (without substrate), and then the residual activities were measured. The 

thermo stability of the purified endo-PGase was assayed by incubating the enzyme (at an optimal 
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pH of 5.0) at different temperatures for various periods (with substrate), and the residual activities 

were measured. The enzyme activity of untreated enzyme was defined as 100%, and the residual 

enzyme activities were calculated as relative values. 

In order to determine the substrate specificity, the enzyme activities on 0.5% (W/V) PGA, 

citrus pectin and apple pectin were tested under optimal pH (pH 5.0) and temperature (65 °C) 

conditions. The enzyme activity on PGA was defined as 100%, and other enzyme activities were 

calculated as relative values. 

The kinetic parameters of the purified endo-PGase were determined by assaying the specific 

activities of the enzyme on 0.2-2.0 g/L of PGA at optimal pH (pH 5.0) and temperature (65 °C). 

The Km and Vmax values were obtained by calculation using the Line-weaver Burk plot method. 

The effects of chemicals on the enzyme activity of the purified endo-PGase were investigated 

by adding the metal ions (1 or 2 mM of Na+, K+, Mg2+, Ca2+, Mn2+, Ba2+, Co2+, Zn2+, Fe2+ or Cu2+) 

into the reaction system, and measuring the enzyme activities. The enzyme activity without additive 

was defined as 100%, and other enzyme activities were calculated  as relative values. 

Sequence Analysis 

The signal peptide was predicted using SignalP 4.1 online Server 

(http://www.cbs.dtu.dk/services/SignalP/). The catalytic domain was predicted using SMART 

online server (http://smart.embl-heidelberg.de/). The hypothetical molecular weight of proteins 

was calculated using ExPASy online server (http://web.expasy.org/protparam/). Multiple sequence 

alignment was carried out using the DNAMAN 6.0 software, and the reported fungal 

endo-PGases used were PGA (from Aspergillus aculeatus, GenBank accession no. 1IA5_A) (Cho 

et al., 2001), pga II (from Aspergillus niger, Genbank accession no. CAA41694) (van Santen et al., 

http://www.cbs.dtu.dk/services/SignalP/
http://smart.embl-heidelberg.de/
http://web.expasy.org/protparam/
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1999), PoxaEnPG28A (from Penicillium oxalicum CZ1028, Genbank accession no. KU366356) 

(Cheng et al., 2017),  pgaE (from Aspergillus niger N400, Genbank accession no. O42809) 

(Pařenicová et al., 1998), PG7fn (from Thielavia arenaria XZ7, Genbank accession no. AIZ95162) 

(Tu et al., 2014), endo-PG I (from Achaetomium sp. Xz-8, Genbank accession no. AGR51994) 

(Tu et al., 2013), CluPG1 (from Colletotrichum lupine SHK788, Genbank accession no. 2IQ7) 

(Bonivento et al., 2008) and ENPG-1 (from Cryphonectria parasitica, Genbank accession no. 

AAB36616) (Gao et al., 1996). Phylogenetic tree was constructed using the Mega software 

(Tamura et al., 2004). Other reported endo-PGases like endo-PG I (from Penicillium sp. CGMCC 

1669, Genbank accession no. AEL22832) (Yuan et al., 2011), endo-PGA1 (from Bispora sp. 

MEY-1, Genbank accession no. ADZ99366) (Yang et al., 2011), RePgaA (from Aspergillus niger 

JL-15, Genbank accession no. AGV40780) (Liu et al., 2014), endo-PgaA (from Aspergillus niger 

SC323, Genbank accession no. AJD09825) (Zhou et al., 2015), Epg1-2p (from Kluyveromyces 

marxianus CECT1043, Genbank accession no. AAR84199) (Sieiro et al., 2009), PGA-ZJ5A 

(from Aspergillus niger ZJ5, Genbank accession no. AQT01640) (Wang et al., 2017), PehA (from 

Burkholderia cepacia  ATCC 25416, Genbank accession no. AAB46984) (Gonzalez et al., 1997; 

Massa et al., 2007), endo-PGase (from Pectobacterium carotovorum, Genbank accession no. 

WP_039543807) (Rafique et al., 2016), ThPG1 (from Trichoderma harzianum T34, Genbank 

accession no. CAM07141) (Morán-Diez et al., 2009) were also included for phylogenetic tree 

construction. 
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FIGURE S1. The kinetic parameters of the purified PoxaEnPG28B-Pp. 

The kinetic parameters of the purified PoxaEnPG28B-Pp were determined by assaying the 

reaction rates for polygalacturonic acid at concentrations ranging from 0.2–2.0 g/L under the 

standard assay condition (at pH 5.0, 65 °C and for 15 min) (A)，error bars present the standard 

deviation of three repeats. The Michaelis constant (Km) and the maximum reaction velocity 

(Vmax) were obtained from the Line-weaver Burk plot (B). 
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FIGURE S2. Phylogenetic tree of amino acids of PoxaEnPG28B with reported endo-PGases. 

Phylogenetic tree of amino acids of PoxaEnPG28B with reported endo-PGases (from fungus, 

yeast and bacteria) was constructed by using MEGA software. PoxaEnPG28B was boldfaced. 
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FIGURE S3. Alignment of amino acids of PoxaEnPG28B with reported fungal endo-PGases. 

The amino acid sequence encoded by the amplified cDNA was aligned with reported 

endo-PGases. Amino acid residues showing identities of 100%, higher than 75% and 50% were 

shaded in deep blue, light red and light green, respectively. The conserved amino acids Asp195, 

Asp216, Asp217 and His238, which were predicted to play a crucial role in the catalytic function of 

the encoded protein, were marked by solid circles. Arg274 and Lys276, which were predicted to be 
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involved in substrate binding, were marked by solid stars. Four predicted strictly conserved 

disulphide bridges (Cys40-Cys58, Cys218-Cys234, Cys346-Cys351, and Cys370-Cys379) were marked by 

solid triangles. 
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TABLE S1. Specific primers for gene cloning of PoxaEnPG28B. 

Expression 

host 

Vector Recombin

ant protein 

Primer 

name 

Primer sequence (restriction endonuclease 

site was underlined) 

Escherichia 

coli 

BL21(DE3) 

pET22b(

+) 

PoxaEnPG

28B-Ec 

BL21–repg

BF 

ATTACCATGGCGTCACCCGTCGCTGA

GCCG (Nco I) 

BL21–repg

BR 

ACGAGAGCTCCTAGTGGTGGTGGTG

GTGGTGAGAGCACTTGGTCACACTG

G (Sac I) 

Pichia 

pastoris 

GS115 

pPIC9K PoxaEnPG

28B-Pp 

GS115–repg

BF 

GACCTACGTATCACCCGTCGCTGAGC

CG (SnaB I) 

GS115–repg

BR 

CGACCTAGGTCAAGAGCACTTGGTC

ACACTGG (Avr II) 
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TABLE S2. Purification of the recombinant polygalacturonase PoxaEnPG28B-Pp. 

Purification 

step 

Enzyme 

activity (U) 

Protein 

(mg) 

Specific 

activity (U/mg) 

Purification 

fold 

Yield 

(%) 

Culture broth 221508.4 14.2 15599.1 1.0 100.0 

Ultrafiltration 203146.0 7.8 26044.3 1.6 91.7 

SEC 36770.5 3.3 31974.3 2.0 16.6 
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TABLE S3. Application of PoxaEnPG28A in fruit juices extraction at 65 °C. 

Fruits Enzyme 

dosages (mg/kg 

pulp) 

Reduction of 

viscosity (%)a 

Increment of light 

transmittance (%)a 

Increment of 

yield (%)a 

Papaya 0.01 2.9±0.2 19.6±1.4 7.9±0.3 

 0.02 4.5±0.2 20.2±1.1 9.1±0.4 

 0.04 6.6±0.3 23.2±1.8 10.0±0.4 

Banana 0.01 13.1±0.9 1.9±0.1 1.0±0.1 

 0.02 24.2±1.3 2.0±0.1 1.0±0.1 

 0.04 35.6±1.9 5.1±0.3 2.7±0.2 

Plantain 0.01 36.3±2.2 27.6±1.9 35.2±0.8 

 0.02 55.5±2.8 31.6±1.9 42.2±2.5 

 0.04 68.7±3.4 34.0±2.7 53.5±3.7 

a All experiments were performed in triplicate and mean values were presented. The experiments 

were repeated three times and similar results were obtained. 
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