

Supplemental Figure 1. Biophysical properties of NiV F variants. (A) SD200 size-exclusion chromatography profiles of 8 NiV F variants, highlighting the monodispersed characteristics of the pre-F (NiVop08, red). **(B)** Binding kinetics of the lead stabilized prefusion conformation F designs to the NiV prefusion-specific antibody, h5B3, as measured by fortéBio Octet Red384 instrument. **(C)** Two-dimensional class averages of stabilized prefusion conformation F designs obtained by negative-stain EM. **(D)** SDS-PAGE, under non-reduced and reduced conditions, showing expression of stabilized prefusion conformation F designs.

Supplemental Figure 2

Supplemental Figure 2. Biophysical characterization of NiV G and F/G variants. (A) SD200 size-exclusion chromatography profiles of multimeric forms of G. (B) SD200 size-exclusion chromatography profiles of F/G chimeric variants. (C, D) Binding kinetics were measured using a fortéBio Octet Red384 instrument and tables summarize binding affinities of multimeric forms of G and F/G chimeric immunogens to the HeV G-specific antibody, m102.4 (C) and to the NiV pre-F-specific antibody, h5B3 (D). (E) SDS-PAGE, under non-reduced and reduced conditions, showing expression of multimeric forms of G. (F) SDS-PAGE, under non-reduced and reduced conditions, showing expression of NiV F/G chimeric designs.

Name	F Amino Acid	Mutation	G Amino Acid	Linker	Trimerization Domain
04	1-488	T101 GSG I114			GCN4
05	1-488	I114C-L104C			GCN4
06 (Post-F)	1-488	N99 GGS G117			GCN4
07	1-488	I114C-I426C			GCN4
08	1-488	L172F			GCN4
09	1-488	S191P			GCN4
op02	1-488	I114C-L104C, L172F			GCN4
op05	1-488	I114C-L104C, S191P			GCN4
op06	1-488	T101 GSG I114, S191P			GCN4
op08 (Pre-F)	1-488	I114C-L104C, S191P, L172F			GCN4
op12	1-488	S191P, L172F			GCN4
op13	1-488	S191P, L172F, Q70G			GCN4
op14	1-488	I114C-L104C, S191P, L172F, Q70G			GCN4
Mono G			172-602		N/A
Tri G			172-602		Fd
Hex G			172-602		Fd
Fer-G			172-602	G_3SG_2	N/A
Stalk G			72-602		N/A
Pre-F/G	1-488	I114C-L104C, S191P, L172F	177-602	GSG ₅	GCN4-Fd
G/Pre-F	1-488	I114C-L104C, S191P, L172F	177-602	G_4SG_4	GCN4-Fd

Supplemental Table 1. NiV F, G and Pre-F/G Designs.

Prime with (A) 10 mg/immunization, Alum Boost 1 Week 3 Ô CB6F1/J Pre-immune Week 2 Week 5 mice Serum Bleed 10/group Serum Bleed Serum Bleed Serum Analysis (C) (B) Serum Binding to Pre-F 6 6 1st generation 2nd generation 1st generation Response Units (nm) Response Units (nm) 2 2 0 Λ preimmune opos 0002 0000 0000 0012 9, 04 05 \$ ൖ 00 00 00 ര 5 % ര Vaccine Immunogen (D) (E) Serum Binding to Pre-F 6 6 G multimers F/G F+G F G multimers Response Units (nm) Response Units (nm) 4 2 2 0 n MonoG THO TH Het Forcins Fercinas

Vaccine Immunogen

Supplemental Figure 3. Immunogenicity of NiV Pre-F stabilized immunogens, multimeric forms of G and F/G chimeric immunogens. (A) Mouse study immunization scheme. Groups of 10 mice each were immunized intramuscularly with 5 or 10 μ g of purified protein, adjuvanted with alum, at week 0 and week 3. Animals were bled at week 2 and week 5. Week 5 sera was analyzed for reactivity and neutralization. (B,C) Recognition of pre-F (B) or post-F (C) NiV F proteins by sera from mice immunized twice with NiV F designs or pre-immune sera. (D, E) Recognition of pre-F NiV F (D) or mono G (E) proteins by sera from mice immunized twice with NiV F designs, multimeric forms of G or pre-F/G chimeric immunogens or pre-immune sera. Binding kinetics were measured using a fortéBio Octet Red384 instrument. Line represents mean of all animals in each group +/- standard deviation.

Supplemental Figure 3

	Reciprocal	
Immunogen	Neutralizing IC80	
	Titer	
04	639.9	
05	977.4	Ęi
06 (Post-F)	<25	era
07	116.8	le
08	203.7	at a
09	1125	ľ
op02	1373	
op05	1376	Б
op06	979	rati
op08 (Pre-F)	1119	l Se
op12	842	ğ
op13	1534	Ň
op14	290.6	
Mono G	387.5	
Tri G	628.4	ers
Hex G	3426	E
Fer-G	2103	E
Fer-G-In15	3180	Ū
Fer-G-In35	3073	
Pre-F/G	6763	
G/Pre-F	4535	Ť
Pre-F + Tri G	1406	P
Post-F/G	6389	Q
Post-F + Tri G	1166	l"

Supplemental Table 2. Neutralization of NiVF/G VSV Δ G-luciferase pseudovirus by pooled sera from mice immunized with NiV stabilized pre-F, multimeric G and F/G chimeric immunogens. VSV Δ G-luciferase pseudovirus (expresses both NiV F_{WT} and NiV G on surface) neutralization assays were performed on pooled mouse sera collected at week 5. The reciprocal neutralizing IC₈₀ titer for each sample was calculated by curve fitting and non-linear regression using GraphPad Prism.