
		CAA1 mAb			
Structural Attribute	Analytical Method	SIgA1	SIgA2	dlgA2	
Conformational Stability	Tm value by intrinsic fluorescence spectroscopy, (°C) $ (n=3 \pm SD) $	72.0 ± 0.4	79.0 ± 0.5	78.5 ± 0.7	
Relative Solubility	PEG precipitation assay, (% PEG midpoint) $\{n=2\ \pm\ \text{data range}\}$	5.2 ± 0.1	5.1 ± 0.1	6.2 ± 0.1	
	% Main species by SV-AUC, (%) (~11 Svedbergs) (n=2 ± data range)	27 ± 1	7 ± 1	26 ± 2	
Molecular Size	Higher molecular weight species by SV-AUC, (%) (>12 Svedbergs) (n=2 ± data range)	67 ± 2	91 ± 4	64 ± 2	
	Lower molecular weight species SV-AUC, (%) (<8 Svedbergs) (n=2 ± data range)	6 ± 1	2 ± 1	10 ± 1	
Glycosylation	Total Carbohydrate Analysis, (%) (n=2 ± data range)	38.9 ± 0.2	30.7 ± 0.1	32.0 ± 0.1	
	N-Glycan Oligosaccharide Analysis, (# of N-glycans)	20	21	21	

Supplemental Figure 3. Structural characterization of recombinant SIgA.

(A) Summary of the biophysical characteristics of CAA1 mAb in the SIgA1, SIgA2, and dIgA2 formats. Various measurements included conformational stability by intrinsic fluorescence spectroscopy vs temperature, relative solubility by PEG precipitation assay, size analysis by SV-AUC and glycosylation by total carbohydrate analysis and N-glycan oligosaccharide analysis. Sample measurements were performed in PBS, pH 7.2 with mean (n=2 except Tm values and N-linked glycan analysis n=3) ± range. (B) Representative size exclusion chromatograms. Absorbance traces (214 nm) of the various CAA1 mAbs as a function of retention time of SEC column are shown. Gel filtration standards are shown for comparison. (C) Representative N-Glycosylation analysis of CAA1 SIgA1, SIgA2, and dIgA2 mAbs. Representative profiles of Fluor-MS N-linked glycans that were released from mAbs as measured by fluorescence and mass spectrometry as indicated. All data are presented as mean ± SD; n = 3. A summary of the percentage of the N-glycans for each mAb is indicated in the table. The percentages are the mean of three measurements and the standard deviation of each measurement was ≤1.5%. (D) Denaturing non-reducing gel of CAA1 SIgA1 and SIgA2 incubated over-night (18 hours) with PBS or with rIgA protease (IgAse Pro-Pro-Y-Pro) from Neisseria gonorrhoeae. (1: SIgA1 + PBS; 2: SIgA2 + PBS; 3: SIgA1+Igase; 4: SIgA2+Igase).

,	CAA1 SIgA1 10 15 20 25 30 35 160 160 160 160 160 160 160 160 160 160						
jo	160	Normalized MS Intensity					
	CAA1 SIgA2						
	160 15 20 25 30 35 0 20 140 140 140 140 140 140 140 140 140 14	1					
	Retention Time (min)						
	CAA1 dlgA2						
	160 0 20 20 20 20 20 20 20 20 20 20 20 20	Normalized MS Intensity					
)	MW 1 2 3 4						
	KDa 460- 268- 238-						
	171 IgA						
	117—						
	71—						
	55 Fab						
	41—						

Common Name	Oxford Notation	CFG	Percentage (%) in CAA1 SIgA1	Percentage (%) in CAA1 SIgA2	Percentage (%) in CAA1 dlgA2
G0-GN	A1	<u> </u>	1.4	0.8	0.6
G0F-GN	FA1	#[\$ -1 \$	0.5	1.4	1.4
G0	A2		1.3	1.2	1.1
G1-GN	A1G1	! -[}}	0.4	0.6	0.8
G0F	FA2		1.9	8.5	8.1
G0F+GN	FA3		-	1.0	0.6
G1	A2G1	• [=3==}	1.3	1.0	1.0
G1F	FA2G1	•	2.9	10.1	12.0
G1F-GN	FA1G1	# {} }	-	10.7	12.9
G1F+GN	FA3G1	\$ \\ \} = \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	-	2.2	1.7
G2	A2G2	•=-} •=-}	3.5	2.2	1.,
G2F	FA2G2	•==	10.0	9.6	8.4
G2F2	FA2F1G2		12.7	-	-
G2FGal1+GN	FA2BG2Ga1		2.1	2.2	1.8
G1F+NANA	FA2G1S1	\$ { □3 • □3 • □3 •	ı	4.7	8.3
G2F+NANA	FA2G2S1	♦ [••••}••••}	6.8	10.7	13.0
G2F+2NANA	FA2G2S2	**************************************	1.7	1.9	2.1
Man4G1+NAN A	M4A1G1S1		3.2	-	-
Man5	M5	3	19.5	9.0	10.4
Man5+GN	M5A1	=	3.5	-	-
Man6	М6	· [35	10.9	6.4	4.9
Man7	M7	4 3 mm3	7.6	6.0	4.8
Man8	M8	# 3	5.0	6.5	3.8
Man9	M9	\$\$ - ₹	3.8	5.5	2.1