
Supplementary Material of
HARMONIES: A Hybrid Approach for Microbiome
Networks Inference via Exploiting Sparsity

1 MCMC ALGORITHM
We start by writing the likelihood for each sample i, i = 1, . . . , n as

fZINB(yi·|αi·,ηi·,φ, si) =

p∏
j=1

fZINB(yij |αij , ηij , φj , si),

where

fZINB(yij |αij , ηij , φj , si)

=I(yij = 0)ηij

(
Γ(yij + φj)

yij !Γ(φj)

(
φj

siαij + φj

)φj ( siαij
siαij + φj

)yij)1−ηij

.

Update of zero-inflation indicator ηij: We update each ηij , i = 1, . . . , n, j = 1, . . . , p that corresponds
to yij = 0 by sampling from the normalized version of the following conditional:

p(ηij |·) ∝ fZINB(yij |αij , ηij , φj , si) · Bern(ηij ; πi).

After the Metropolis-Hasting steps for all ηij , we use a Gibbs sampler to update each πi, i = 1, . . . , n:

πi|· ∼ Be(aπ +

p∑
j=1

ηij , bπ + p−
p∑
j=1

ηij).

Update of dispersion parameter φj: We update each φj , j = 1, . . . , p by using a random walk
Metropolis-Hastings algorithm. We first propose a new φj

∗ from Ga(φj
2/τφ, φj/τφ) and then accept

the proposed value φj∗ with probability min(1,mMH), where

mMH =

∏n
i=1 fZINB(yij |αij , ηij , φj , si)∏n
i=1 fZINB(yij |αij , ηij , φj , si)

Ga(φj
∗; aφ, bφ)

Ga(φj ; aφ, bφ)

J(φj ;φj
∗)

J(φj
∗;φj)

.

Here we use J(·|·) to denote the proposal probability distribution for the selected move. Note that the last
term, which is the proposal density ratio, can be canceled out for this random walk Metropolis update.

Update of size factor si: We can rewrite Equation (2) in the main text, i.e.

log si ∼
M∑
m=1

ψm

[
tm N(νm, σ

2
s) + (1− tm) N

(
− tmνm

1− tm
, σ2
s

)]
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by introducing latent auxiliary variables to specify how each sample (in terms of log si) is assigned to any of
the inner and outer mixture components. More specifically, we can introduce an n× 1 vector of assignment
indicators g, with gi = m indicating that log si is a sample from the m-th component of the outer mixture.
The weight ψm determines the probability of each value gi = m, with m = 1, . . . ,M . Similarly, we can
consider an n× 1 vector ε of binary elements εi, where εi = 1 indicates that, given gi = m, log si is drawn
from the first component of the inner mixture, i.e. N(νm, σ

2
s) with probability tm, and εi = 0 indicates

that log si is drawn from the second component of the inner mixture, i.e. N
(
− tmνm1−tm , σ

2
s

)
, with probability

1− tm. Thus, the Dirichlet process prior (DPP) model can be rewritten as

log si|gi, εi, t,ν ∼ N
(
εiνgi + (1− εi)

−tgiνgi
1− tgi

, σ2
s

)
,

where t and ν denote the collections of tm and νm, respectively. Therefore, the update of the size factor
si, i = 1, . . . , n can proceed by using a random walk Metropolis-Hastings algorithm. We propose a new
log s∗i from N(log si, τ

2
s ) and accept it with probability min(1,mMH), where

mMH =

∏p
j=1 fZINB(yij |αij , ηij , φj , s∗i )∏p
j=1 fZINB(yij |αij , ηij , φj , si)

N(log s∗i ; εiνgi + (1− εi)
−tgiνgi
1−tgi

, σ2
s)

N(log si; εiνgi + (1− εi)
−tgiνgi
1−tgi

, σ2
s)

× J(log si; log s∗i )

J(log s∗i ; log si)
.

Note that the last term, which is the proposal density ratio, equals 1 for this random walk Metropolis update.
Since g, ε, t, and ν have conjugate full conditionals, we use Gibbs samplers to update them one after
another:

• Gibbs sampler for updating gi, i = 1, . . . , n, by sampling from the normalized version of the following
conditional:

p(gi = m|·) ∝ ψmN
(

log si; εiνm + (1− εi)
−tmνm
1− tm

, σ2
s

)
.

• Gibbs sampler for updating εi, i = 1, . . . , n, by sampling from the normalized version of the following
conditional:

p(εi|·) ∝

{
(1− tm)N

(
log si;− tmνm1−tm , σ

2
s

)
if εi = 0

tmN
(
log si; νm, σ

2
s

)
if εi = 1

.

• Gibbs sampler for updating tm,m = 1, . . . ,M :

tm|· ∼ Be(at +
n∑
i=1

I(gi = m)I(εi = 1), bt +
n∑
i=1

I(gi = m)I(εi = 0)).

• Gibbs sampler for updating νm,m = 1, . . . ,M :

νm|· ∼ N
(

cm/σ
2
s

em/σ2
s + 1/τ2

ν
,

1

em/σ2
s + 1/τ2

ν

)
,
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where cm =
∑
{i:gi=m,εi=1} log si − tm

1−tm
∑
{i:gi=m,εi=0} log si and em =

∑n
i=1 I(gi = m)I(εi =

1) +
∑
{i:gi=m,εi=0}

(
tm

1−tm

)2
.

• Gibbs sampler for updating ψm,m = 1, . . . ,M by stick-breaking process:

ψ1 = v1,

ψ2 = (1− v1)v2,

...

ψM = (1− v1) · · · (1− vM−1)vM ,

where vm|ν ∼ Be
(
am +

∑n
i=1 I(gi = m), bm +

∑n
i=1 I(gi > m)

)
.

For the sake of convenience, we have copied Equation (3) in the main text here,

p(α·j) = (nh0 + 1)−
1
2

Γ
(
a0 + n

2

)
Γ(a0)

ba00{
b0 + 1

2

[∑n
i=1 logα2

ij −
(
∑n
i=1 logαij)

2

n+ 1
h0

]}a0+n
2
.

Update of normalized abundance: We update each αij , i = 1, . . . , n, j = 1, . . . , p by using a
Metropolis-Hastings random walk algorithm. We first propose a new αij

∗ from N(αij , τ
2
α), and then

accept the proposed value with probability min(1,mMH), where

mMH =
fZINB(yi·|αi·∗, ·)
fZINB(yi·|αi·, ·)

p (α·j
∗|γj)

p (α·j |γj)
J (αij ;αij

∗)

J (αij∗;αij)
.

Note that the last term, which is the proposal density ratio, equals 1 for this random walk Metropolis
update.
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SUPPLEMENT TO SECTION 3.2: ANALYSIS OF MICROBIOME DATA FROM 
COLORECTAL CANCER PATIENTS
We carried out a simple sensitivity analysis to evaluate the model performance to the choice of the filtering 
threshold. As discussed in Section 3.2, we filtered out the genera with more than 50% of nonzero counts 
across the samples. Here, we changed the threshold from 50% to 10%. The new threshold left 92 and 84 
genera in the CRC and control group, respectively. Figure S2 shows the network inferred under this new 
setting.

Our first observation is that there were a large number of similarities between the networks. For instance, 
in the CRC group, the relatively stronger associations remained the same, such as positive associations 
between Bacteroides and Alistipes, Barnesiella and Alistipes, Blautia and Dorea, Streptococcus and 
Haemophilus. Though the new CRC network did not show any negative partial correlations (denoted 
by the red edges), the negative associations in the original network were relatively weak and might not 
be as stable as the other edges. Notably, the “positive triangle” among the three genera Fusobacterium, 
Peptostreptococcus, and Parvimonas was again confirmed here. In the control group, the strong associations 
can be still detected, such as the positive associations between Alistipes and Parabacteroides, Alistipes and 
Bacteroides, and negative associations between Bacteroides and Dorea. It is interesting to point out that the 
networks based on the new threshold tended to have fewer edges.

We also observed that increasing the number of genera in the networks could introduce novel associations. 
For example, genera Pantoea and Escherichia were dropped from the original CRC group network, 
yet they established a positive association in the new network. Similarly, genera Pantoea, Escherichia, 
Abiotrophia, Oxalobacter, and Desulfovibrio were of low abundance in the healthy controls and hence 
were not considered in the model before. However, they were connected in the new network. These results 
estimated from those highly sparse genera may hint further biological validations.
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2 INFER THE NORMALIZED ABUNDANCES FOR MULTIPLE GROUPS
In practice, when there are two groups of subjects in a microbiome study (e.g., subjects with two distinct
phenotypes), the sequencing data usually include measurements on the same taxonomic features for all
the subjects. Then, if the abundance of a taxon j does not differ between two groups, we can improve the
posterior influence of logα·j by merging two groups to increase the sample size. On the other hand, if the
taxon is associated with subject’s condition, i.e., a taxon that changes its abundance between two groups in
the study, the inference of logα·j should rely on each subject group.

With the goal of borrowing information to improve the posterior inference for certain taxa, we combine the
original count matrix from two different groups, to generate the count matrix Yn×p. Here, the sample size is
n = n1 +n2, with n1, n2 representing the number of subjects in the first and the second groups, respectively.
Meanwhile, we let z = (z1, . . . , zn)T to allocate the n subjects into two groups, with zi = 1 or 2 indicating
the group label of subject i. In practice, if taxon j is irrelevant to the subject’s phenotype, its abundances
should not be differentiating between two groups. However, if taxon j is associated with the disease, its
abundance could either increase or decrease from healthy subjects to patients. Therefore, we model the
normalized abundance αij as following:

logαij |γj ∼


N(µ0j , σ

2
0j) if γj = 0

N(µ1j , σ
2
1j) if γj = 1 and zi = 1

N(µ2j , σ
2
2j) if γj = 1 and zi = 2

. (S1)

Here, γj is a latent binary variable, with γj = 1 if taxon j is differentially abundant between two groups,
and γj = 0 otherwise. For the taxa with γj = 0, we can borrow information between groups to increase the
sample size in estimating the corresponding posterior of logα·j . As an extension to Section 2.1 where we
assume logαij ∼ N(µj , σ

2
j ), the current model includes µ0j , µ1j , and µ2j as the mean parameters for the

normal mixture model. Again, we take the conjugate Bayesian approach and impose the following priors
for the parameters in the normal mixture model: µ0j ∼ N(0, h0σ

2
0), σ2

0j ∼ IG(a0, b0), µkj ∼ N(0, hkσ
2
k)

and σ2
kj ∼ IG(ak, bk) for k = 1, 2.

The estimation of γj’s determines the resulted normalized abundance matrix. Specifically, for taxon j
with γj = 0, we can impute the zeros due to missing by the posterior mean of logα·j calculated using
information from both groups. As an extension to Equation (3) in the main text , the posterior of α·j |γj is
as following:

p(α·j |γj) = (2π)−
n
2×

∏K
k=1(nkhk + 1)−

1
2

Γ(ak+
nk
2 )

Γ(ak)

b
ak
kbk+ 1

2

∑{i:zi=k}
logα2

ij−

(∑
{i:zi=k}

logαij

)2
nk+

1
hk


ak+

nk
2

if γj = 1

(nh0 + 1)−
1
2

Γ(a0+n
2 )

Γ(a0)
b
a0
0{

b0+ 1
2

[∑n
i=1 logα2

ij−
(
∑n
i=1 logαij)

2

n+ 1
h0

]}a0+n2
if γj = 0

,
(S2)
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Therefore, we can obtain the posterior mean of logα·j by averaging over the log-transformed MCMC
samples of α·j after burn-in.
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Figure S1. CRC case study: The estimated networks by HARMONIES for (a) CRC patients and (b) 
healthy controls. All nodes are labeled in their genus names.
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(a) (b)Microbiome network 
for CRC patients (10% nonzero)
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Figure S2. CRC case study: The estimated networks by HARMONIES for (a) CRC patients and (b) 
healthy controls. The nodes are genera that have at least 10% nonzero observations across the samples in 
each group.
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