Supplementary Material

A novel MFS-MDR transporter, MdrP, employs D223 as a key determinant in the Na^{+}translocation coupled to norfloxacin efflux

Rui Zhang, Heba Abdel-Motaal, Qiao Zou, Sijia Guo, Xiutao Zheng, Yuting Wang, Zhenglai Zhang, Lin Meng, Tong Xu, Juquan Jiang*

Department of Microbiology and Biotechnology, College of Biological Sciences, Northeast Agricultural University,Harbin, China

* Correspondence:

Juquan Jiang jjqdainty@163.com

Supplemental Table 1. Primers used in this study.

Primers	Primer sequence (5' to 3')	The source
MdrP-F	TCTAGAGTGTCTTTGGAAACGGGCAG	This study
MdrP-R	GGTACCTTAATGATGATGATGATGATGCTTGTCGTCGTCGTCTAT	This study
YdhE-F	GTTCGCAACCGTTCTTTTATC (6×His tag, underlined)	This study
YdhE-R	TTGTCACCCACCAGCGCGGA	This study
NhaD-F	ATAATATGACCTGACATTAA	This study
NhaD-R	TATACCTACAAAGCAACGGA	This study
D67A-F	GAAGCGCTTACCGCTGGATG	GGCTATTTTGCTGCACGGTTCGGGC (Mutagenic bases, underlined)
D67A-R	TGCAGCAAAATAGCCGCCAAATAAA (Mutagenic bases, underlined)	This study
R71A-F	GACCGGTTCGGGGCCAAGCGGATGC (Mutagenic bases, underlined)	This study
R71A-R	GGCCCCGAACCGGTCAGCAAAATAG (Mutagenic bases, underlined)	This study
R71K-F	GACCGGTTCGGGAAGAAGCGGATGC(Mutagenic bases, underlined)	This study
R71K-R	CTTCCCGAACCGGTCAGCAAAATAG (Mutagenic bases, underlined)	This study
D127A-F	GCAATGATTGCCGCTGTCATTCCTG (Mutagenic bases, underlined)	This study
D127A-R	AGCGGCAATCATTGCTTGGCTCGCT (Mutagenic bases, underlined)	This study
D127E-F	GCAATGATTGCCGAGGTCATTCCTG (Mutagenic bases, underlined)	This study
D127E-R	CTCGGCAATCATTGCTTGGCTCGCT (Mutagenic bases, underlined)	This study
D127N-F	GCAATGATTGCCAATGTCATTCCTG (Mutagenic bases, underlined)	This study
D127N-R	ATTGGCAATCATTGCTTGGCTCGCT (Mutagenic bases, underlined)	This study
E188A-F	TTTTATACAGAGGCGACTTTATCGG (Mutagenic bases, underlined)	This study
E188A-R	CGCCTCTGTATAAAAGCGTAATAAC (Mutagenic bases, underlined)	This study
D223A-F	ATCATTTTAAAAGCCCGTGTCTTTT (Mutagenic bases, underlined)	This study
D223A-R	GGCTTTTAAAATGATGCCGTAATCT (Mutagenic bases, underlined)	This study
D223E-F	ATCATTTTAAAAGGAGCGTGTCTTTT (Mutagenic bases, underlined)	This study
D223E-R	CTCTTTTAAAATGATGCCGTAATCT (Mutagenic bases, underlined)	This study
D223N-F	ATCATTTTAAAAAATCGTGTCTTTT (Mutagenic bases, underlined)	This study
D223N-R	ATTTTTTAAAATGATGCCGTAATCT (Mutagenic bases, underlined)	This study
D244A-F	TTCATGCAATTGGCGCTCGTTATTC (Mutagenic bases, underlined)	This study
D244A-R	CGCCAATTGCATGAAAGTCTGCGCC (Mutagenic bases, underlined)	This study
D244E-F	TTCATGCAATTGGAACTCGTTATTC (Mutagenic bases, underlined)	This study

A novel MFS drug/ $\mathbf{N a}^{+}$antiporter

D244E-R
D244N-F
D244N-R
E341A-F
E341A-R
R361A-F
R361A-R
R361K-F
R361K-R

TTCCAATTGCATGAAAGTCTGCGCC (Mutagenic bases, underlined) TTCATGCAATTGAACCTCGTTATTC (Mutagenic bases, underlined) GTTCAATTGCATGAAAGTCTGCGCC (Mutagenic bases, underlined) TTCACATTTGCCGCATTGATGGTAG (Mutagenic bases, underlined) TGCGGCAAATGTGAAAACTGCCATC (Mutagenic bases, underlined) CCGGAGTCCATGGCCGGACAGTATT (Mutagenic bases, underlined) GGCCATGGACTCCGGCGCCAGTTTA (Mutagenic bases, underlined) CCGGAGTCCATGAAAGGACAGTATT (Mutagenic bases, underlined) TTTCATGGACTCCGGCGCCAGTTTA (Mutagenic bases, underlined)

This study

Supplemental Figure 1. Growth curves of E. coli CM2 transformants in the LBO media plus $0.025 \mu \mathrm{~g} / \mathrm{ml}$ norfloxacin without or with the addition of NaCl .

Pre-cultures of E. coli CM2 transformants were grown in LBO broths to $\mathrm{OD}_{600 \mathrm{~nm}}$ of 1.0 , and then 1% of pre-cultures were innoculated in the fresh LBO broths plus 0.025 $\mu \mathrm{g} / \mathrm{ml}$ norfloxacin without the addition of NaCl (A) or with the addition of 250 mM $\mathrm{NaCl}(\mathrm{B})$. Growth curves were plotted by evaluating $\mathrm{OD}_{600} \mathrm{~nm}$ of E. coli CM2 transformants in triplicate within 32 h . Blue filled square stands for $\mathrm{CM} 2 / \mathrm{MdrP}$; green filled upward triangle stands for $\mathrm{CM} 2 / \mathrm{YdhE}$ as the positive control of a H^{+}-coupled norfloxacin efflux transporter; brown filled downward triangle stands for CM2/NhaD as the positive control of a $\mathrm{Na}^{+} / \mathrm{H}^{+}$antiporter; purple open square stands for CM2/Empty vector as a negative control.

Planococcus maritimus MdrP
Planococcus plakortidis pMdr
Planococcus rifietoensis pMdrP
Plancole Planococcus donghaensis pMdrP Planomicrobium okeanokoites pM Planomicrobium glaciei pMdrP Planococcus massiliensis pMdrP
Psychrobacilus psychrodurans pMdrP
Paenisporosarcina quisquiliarum PMdrP Paenisporosarcina indica pMdr acillus campisalis pMdr Halobaciillus mangrovi pMdrp
Fictibacillus enclensis PMdr Fictibacillus enclensiis PMdrP
Anaerobacillus macyae pMdrP Anoxybacillus pushchinoensis pMdrP isteria welshimeri pMdrP Brochothrix thermosphacta pMdrP
Rubeoparvulum massiliense pMdrP
Brevibacillus brevis pMdrP ady anicoblum glunicum pMdr Paenibacillus glucanolyticus pMdrP
Gorillibacterium massiliense pMdrP ceanobacillus kimassii pMrp pMdrP
ceanobacillus massiliendis PMdrP Oceanobacillus massiliensis pMd
Pontibacillus halophilus pMdrp
Terribacillus halophilus pMdrP Bacillus coagulans pMdrP
Lentzea jiangiensis pMdrP
Bacillus cereus pMdrP Lentzea jiangxiensis pM
Bacillus cereus pMdrP Planococcus maritimus MdrP
Planococcus plakortidis pMdrP
Planococcus rifietoensis pMrr
Planococcus donghaensis pMdrP Planomicrobium okeanokoites pMdrP
Planomicrobium glaciei pMdrP lanomicrobium glaciei pMdr
Planococcus massiliensis pMdrP Psychrobacillus psychrodurans pMdrP
Paenisporosarcina aenisporosarcina indica pMdrP cillus campisalis pMdrP Bacillus campisalis PMdrP
Bacillus weihaiensis pMdrP
Halobacillus mangrovi pMdr ictibacillus enclensis pMdrP Anoxybacillus pushchinoensis pMdrP isteria welshimeri PMdrP rochothrix thernosphacta pMdrP
ubeoparvulum massiliense pMdrP Rubeoparvulum massiliense pM
Brevibacillus brevis pMdrp
Bradyrhizobium Bradyrhizobium japonicum pMdrP Gorilliiinacterium massilitieuse pMdrP
Gceanobacillius kimchii pMdrP ceanobacillus massiliensis PMdr Ponanobacillus massiliensilis phalophilus pMdrP
Terribacillus halophilus pMdrP earibacillus halophilus pMdr Bacilluus coagulans pMdrP
Lentzea jiangxiensis pMdrP
Bacillus cereus pMdrP
lanococcus maritimus MdrP Planococcus plakortidis pMdrP
Planococcus rifietoensis pMdr
planococcus donghensis lanococcus donghaensis PMdrP
lanomicrobium okeanokoites PMdrP Planomicrobium glaciei pMdrP
lanococcus massiliensis pMdrP sychrobacillus psychrodurans pMdrP Paenisporosarcina indica pMdr
Bacillus encimensis pMdrP acillus campisalis pMdrP
acillus weihaiensis pMdrF alobacillus mangrovi pMdrP Anaerobacillus macyae pMdrP
Anoxybacillus pushchinoensis pMdr noxybacillus pushchinoensis pMdrP
isteria welshimeri pMdrP steria welshimeri pMdrP
ochothrix thermosphacta Ruchoophrvix thermosphacta pMdrP
Ravesiliense pMdrP
revibacilluus brevis pMdrP adyrhizobium japonicum pMdrP orillibacterium massiliense pMdr ceanobacillus massiliensis PMdr Pontibacillus halophilus pMdrP
acillus coagulans PMdrP
entrea jiangxiensis p

(1)

Planococcus maritimus MdrP
Planococcus plakortidis pMdrP anococcus rifietoensis pMdr Planococcus donghaensis pMdrP
planomicrobium okeanokites pMrP
planomicrobium glaciei pMdrP llanomicrobium glaciei pMdr
Planococcus massiliensis PMdrP ssychrobacillus psychrodurans pMdrP aenisporosarcina indica pMdrP acillius campisalis pMdrP Bacillus weihaiensis pMdrP
Halobacillus mangrovi pMdr Halobacillus mangrovi pMdr
Fictibacillus enclensis pMdrP Anaerobacillus macyae pMdrP Anoxybacillus pushchinoensis pMdr rochothrix thermosphacta pMdrp Rubeoparvulum massiliiense pMdrP
revibacillus brevis pMdrP radyrhizobium japonicum pMdrP
 ceanobaci1llus kimchii pMdrP ceanobacillus massiliensis pMdrp erribacillus halophilus pMdrP acillus coagulans pMdrP
Bacillus cereus PMdrP

Supplemental Figure 2.Alignment of MdrP with 30 representatives of its homologs.

For the analysis of residue conservation, MdrP was aligned with 30 representatives of its homologs clustered within our recently reported phylogenetic tree (Abdel-Motaal et al., 2018). Shading homology corresponds to 100% (black), $\geq 75 \%$ (pink), $\geq 50 \%$ (cyan) and $\geq 33 \%$ (yellow) amino acid identity, respectively. The twelve putative transmembrane helices (TMHs) are marked with light blue cylinders above the alignment. The consensus sequence of the motif A was highlighted above the alignment between TMH2 and TMH3. Conserved amino acid residues (downward triangle) were selected for functional analysis via site-directed mutagenesis.

Supplemental Figure 3. Modeled structures of MdrP based on the templates of 3D structures of E. coli YajR and Staphylococcus hominis PepT.

The modeled structures of MdrP were predicted by using E. coli YajR 3D structure and S. hominis PepT 3D structureas the templates of outward-facingconformation and inward-facing one through the submission of its deduced amino acid sequence to the Phyre2 website http://www.sbg.bio.ic.ac.uk/~phyre2/html/page.cgi?id=index. TMH78 of PepT was considered to be a long loop and α helix 6-7 between TMH6 and TMH7 of MdrP when a modeled structure was constructed using PepT as a template.Predicted outward-facingand inward-facing conformation stereo views oriented parallel to the membrane (A\&B) and from the periplasm (C\&D) oriented vertical to the membrane were shown, respectively. Conserved residues between MdrP and 30 representatives of its homologs (Abdel-Motaal et al., 2018) were highlighted in color and labelled with their residue names, TMH7 and TMH11 were specially colored in yellow and green, respectively. The combinations of the \varnothing and ψ angles of residues in favored, allowed and outlier regions of Ramachandran plot of outward-facingand inward-facing conformation (E\&F) were qualified to test the reliability of structural analysis. Also, alignment of MdrP with E. coli YajR and S. hominis PepT (G) was carried out to show their identity and coverage, and four potential conformation-related residues were highlighted with downward triangles above the alignment.

Supplemental Figure 4. Growth tests for norfloxacin or $\mathbf{N a C l}$ resistance of \mathbf{E}. coli CM2 or KNabc expressing variants E188A and E341A.

The effect of each variant on norfloxacin resistance was tested by its complementation with E. coli CM2 in LB broths containing $0.025 \mu \mathrm{~g} / \mathrm{ml}$ norfloxacin (A) or with E. coli KNabcinLBK broths containing 0.2 M NaCl (B). Cell growth was ended within 24 h for CM2 or 48 h for KNabc, followed by the evaluation of $\mathrm{OD}_{600} \mathrm{~nm}$. Each data point stands for the mean $\pm \mathrm{SD}$ of three independent cultures.

