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1 DEFINITIONS AND NOTATIONS
1.1 Fractional Derivatives

1.1.1 The Fourier transform and the Riesz-Feller space-fractional derivative
Let be the Fourier transform of a general function f(x),

R = Fif(a)) = j o f(2)dr, K eR s1)
and let (S2), N
fl@) = F T ) = 5 | e fan, wer 52

be the inverse Fourier transform. For a sufficiently well-behaved function f(z) we define the Riesz-Feller
space-fractional derivative of order o and skewness 6 as

{(FUPEI — VRO, 0 =l )
0<a<2, |0 <min{e,2—a}

I'(1
Dy f(z) = (1+ >{sm[(oz + 0)7 /2] f f( +€€l+a f( )df

(54)

+ sin[(a — 0 7T/2J f §1+;f( )dé}.

The symbol @/Jg (k) is the logarithm of the characteristic function of a general Levy strictly stable probability
density with index of stability o and asymmetry parameter 6 (improperly called skewness) according to
Feller’s parameterization.

1.1.2 The Laplace transform and the Caputo fractional derivative

Let
o) = £is ) = [ e s 76>, s9)
be the Laplace transform of a function f(¢), and let
. 1 Y4100 B
f@ =L7Hf @)} =5 | e f(s)ds, R(s) =7 >ay (S6)
Y—1i00

where ¢ > 0 and a is a constant defined such that the product e ~®f*| f(¢)] is bounded for all ¢ greater than
some 7’ (i.e., the constant a s exists provided the existence of the Laplace transform). For a sufficiently
well-behaved function f(¢) we define the Caputo time-fractional derivative of order 3, (0 < /5 < 1) through

LD ()} =% f(s) — sP7Lf(0T), 0<B<1 (S7)
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Hence, we can write

t f(r
tpff(t> = { F(ll_g) SO (t_f)g)dT, 0 < 5 <1 ‘

%f(t)a 5 =1
1.2 Stable distribution: |Sato et al./ (1999); Nolan| (2003); Feller (1962)
A non-degenerate random variable X is called stable if for all n > 1, there exist constants ¢,, > 0 and

d, € Rsuchthat X7 +--- + X, 4 cnX + d where X1, Xo, -+, X, are i.i.d realizations of X. The
random variable X is strictly stable if and only if d,, = 0, Vn. It can be shown that the only possible choice
for the scaling constants is ¢,, = n!/ for a certain value o € (0,2].

(S8)

1.2.1 Parameterizations of stable laws:

There are different parameterizations for stable distribution. The variety of parameterizations is caused
by a combination of historical evolution, plus the numerous problems that have been analyzed applying
specialized forms of stable distributions.

1. A random variable X is stable if and only if X % 47 + b where a # 0,b € R and Z is a random
variable with characteristic function (Nolan| (2003)))

exp(—|k[*[1 — i tan T (signk)]) a # 1

Elexp(inZ)] = { exp(—|k|[1 +i¢2(signk)log|k[]) a=1" (59
whereO<a<2,—1<§<lH
2. A random variable X is parameterized as S(«, (, ¢, p; 1) if
E(exp (ikX)) = exp(irp — |ck|“(1 — i¢sign(k)P1)), (S10)
where,
By — { f‘gﬁ@ . (S11)

The distribution is assumed to be standard when the scale ¢ = 1 and the location iz = 0 (Nolan|(2003)).
3. A random variable X is S(«, (,7,d;0) (Nolan| (2003)) if

Xi{ﬂy(Z—ﬂtan%)er 04751’ S12)
vZ + 0 a=1
where the Z is defined at (S9). This can also be rewritten as:
E(exp (ikX)) = exp(ikd — |y&|*(1 — i sign(k)Py)), (S13)
where (1-— \75]1_‘“) tan(%¥) a#1
o = { —%log 7 ’ a=1" (S14)

This form (S(a, ¢, 7, d;0)) is continuous at o = 0. Note that this form is the one used in MATLAB.

! The symbol 4 designates the equality in distribution.

2 The parameter ( is usually called 3 but § is used to describe another parameter in this manuscript.
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4. Feller’s parameterization: (Sato et al. (1999); Feller (1962); |Gorenflo and Mainardi| (1999)); [Takayasu

(1990); Mainardi et al.| (2007)) A random variable X is stable if and only if X d aY + b where
0<a<26<min(a,2 — «a),a # 0,be Rand Y is a random variable with characteristic function

E(exp (irY)) = exp(ivh(k)), (S15)

where ¢ (k) is given by . It is also worth to mention that for b = 0 the characteristic function of
X (which is strictly stable) is given as

E(exp (ikX)) = exp (wg (g)) = exp (z’|a\%§ (li)) : (S16)

For the sake of performing simulation using existing methods on MATLAB, we have to express the
Feller’s parameterization in the S(a, (, 7, d; 0) form. First, we are interested in the strictly stable case
(0 = (ytan(%*)) so we have

exp(ila|“? (k) = exp (i&(y tan <%) — |vk|(1 —i¢ sign(&)@)) : (S17)

The above equation should be correct for any x € R. Solving them (considering separate equation for
imaginary and real parts) gives

1/a
Y=a (COS <%6))
w0 T
¢ — tan (7)cot (%) (S18)

1.2.2 Fractional order absolute moment

Suppose the characteristic function of random variable X is denoted as ¢ x (k) = E[exp(ixX)]. Applying
the method described in (Harvill| (2009)) and using its general result (S20), the fractional order absolute
moment of stable distributions are computed.
Define an auxiliary function p(.):

© —196—1 -
_ —(541) 2 _ ) 6727 D(1 = d) cos(md/2), if0<d<2,6#1
p(0) J() u sin”(u)du { /2, 51 : (S19)

The general result of (Harvill (2009)) is:

p(OE[X]] = fooo kO px(26) + px(~2k) — 2]ds. (S20)

When X is a strictly stable random variable with decomposing the characteristic function as

ox (k) = exp{—2,k"} and @x(—k)=exp{—2,x"}, K=0 (S21)
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where,
zp = exp(ifr/2), 2z, = exp(—i0m/2). (522)

Then . 5
61 _ Los—2 0 6jac | O/a
p(O)E[X|"] = 52°72T <1 a) (zp b ) (S23)

Therefore, the absolute moment of order ¢ is given as

r (1 — Q) coS (‘zr—ae)

«

E[|X|°] = I'(1—6) cos (%ﬂ) .

(S24)

1.2.3 Signed fractional order moment
Using the method provided in Kuruoglu (2001), the signed absolute moment or order § for a-stable
distribution is written as follows. For § € (=2, —1) u (—1,0) we have

1

E| X<5>] 5
T

0
f sign(z) |z’ x (k)e"* dxdr
—a0

20 sin(kz)dx (ox (k) — @i (—k)) dt (S25)

]
(e

St 3 8%8

= (1 + ) cos (?ﬂ) K- o e_”aZ") dt
T

= 111+ 6)cos (—W) BF <“) (g_z’%)]

_ _F(l__) 627T_9 S26
D(1—d8)sin (%) (520

O

[\

As discussed in Kuruoglu (2001), the same result can be generalized to § € [0, «].

1.3 Lévy stable stochastic processes: Zolotarev (1986); Sato et al. (1999)
A one-dimensional stochastic process { X (t);¢ > 0} said to be a Lévy process if it satisfies the following
properties:
1. X(0) = 0.
2. Disjoint increments are mutually independent. It means that forany 0 <t <tz < --- <1, < o the
increments (X (t2) — X (t1), X (t3) — X(t2),..., X(tn) — X (tn—1)) are mutually independent.
3. Stationary increments: for any s < t, X (¢) — X (s) is equal in distribution to X (¢ — s).

4. The sample paths are Cadlag (Billingsley (2008)), meaning they are almost surely right-continuous
and have left limits at all time points.
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A process X () is said to be a strictly o — stable process if it is a Lévy process which also satisfies the
scaling (self-similarity) property (i.e., the process (¢ X (t ¢c~%);¢ = 0) has the same distribution as X (¢) for

every ¢ > 0 denoted as X (t) 4 /ey (1) (Kyprianou (2006)).

One of the main property of a Lévy process is that its characteristic function has the following form
Elexp(ik X(t))] = exp(t ¥(k)). (S27)

This means that the stationary independent increments of process X (¢) are i.i.d samples of a stable
distribution. In case of a one dimensional strictly o — stable process with asymmetric parameter 6, the
U (k) is equal to 9f (k).

1.3.1 Space fractional diffusion: (Gorenflo and Mainardi (2012); Mainardi et al. (2007);
Leonenko et al.[ (2014))

One group of random processes that have a space fractional diffusion are the strictly a-stable processes.
Suppose the random process X () is a strictly a-stable process for some 0 < o < 2and 0 < |6] <
min(a,2 — a). Then, according to (S27), the diffusion that is defined as fog(,t) = P{X(t.) =
x| X (0) = 0}, has a Fourier transform equal to

Fap (o ts) = exp(—t, V0 (r)), (S28)

where wg(n) is the same function defined at . Taking the Laplace transform on ., the fractional order
PDE of the diffusion is achieved

< 1
Jao(K,5%) = m, (S29)
and then Q .
— U0 (K) fa0(r,54) = Su fao(k, s4) — 1. (S30)
So A
a_t*foz,e(x7t*) = .Z‘DQ {faﬁ(.x,t*)}, te = 0 (831)

fa,@(xjo) :5($), z e R.

1.3.2 Stable subordinator process:|[Meerschaert and Strakal (2013); |Leonenko et al.| (2014)

A Subordinator process is defined as a Lévy process with non-decreasing sample paths. Suppose T(t,) is
strictly B-stabl process for some 0 < 5 < 1, and § = —f. It can be shown that the condition § = —f3
(which is only feasible when 0 < 3 < 1) implies that the increments of the process T'(¢,) are almost surely
non-negative, thus here we use the Laplace transform. The diffusion defined as rg(t,ts) = P{T'(ts) =
t|7°(0) = 0}, has a Laplace transform equal to

P5(s,ts) = exp(—tus?). (S32)

3 An a-stable process where v = 3
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1.3.3 Inverse subordinator: Meerschaert and Straka (2013); Gorenflo and Mainardi (2012)
Because T'(t.) is a monotonically increasing function, the inverse process (7% (t)) is a well defined
function, which could be interpreted as the first hitting time.

Ti(t) =inf{r |T(7) = t}, (S33)
which can be used to write the following properties.

to > t; = Ti(t2) = Tu(t1),
P(Tu(t) < ts) = P(T(ts) = t). (S34)

Define qg(t«,t) = P{T4(t) = t«|T%(0) = 0}. Using the property in (S34):

ft* qp(ty, t)dt, = JOO ra(t' t)dt. (S35)
0 t
So P .
qp(ts,t) = a—t*ﬁ ra(t' t)dt’ = L a—t*’l“ﬁ(t/,t*)dt/. (S36)
Then
qp(ts,s) = %%?g(s,t*) = s9 7 exp(—t.s”). (S37)

1.4 Space-Time fractional diffusion: Gorenflo and Mainardi (2012), Mainardi et al.
(2007), Saichev and Zaslavsky| (1997),Gorenflo et al. (2000), Scalas et al.| (2000),
Metzler and Klafter (2000)

Suppose X () is a strictly a-stable process and 7'(t,) is a subordinator process. The process X (t) =
X (T4 (t)) is called a subordinated Leonenko et al.[|(2014) process if T (t) be the inverse process of the
subordinator process (7'(tx)) ﬁ Define a diffusion function u(x,t) = P{X(¢) = x}, hence a direct result
of the definition is

ule, ) = L Fao(@st2)as (b )t $38)

where f, o(x, ) and gg(t+,t) defined in previous section. Using the Laplace and Fourier transform, the
aforementioned expression can be simplified

o0
s s) = L ICRAL A
Q0

=L [exp(—v2 (k)] [s7* exp(—tes”)]dts (S39)

sB-1
87+ 8 (k)

4 t4 is named operational time while ¢ is called physical/regular time
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Then,

~

Pk, s) — P71 = —y? (/{)ﬁ(ﬁ, s). (540)

(0%

Thus,
Dlu(x,t) = ,D§u(z,t), u(z,0)=0d(z), zeR, t=0, (S41)

where 0 < a < 2,]0| < min{a,2 — a} and 0 < § < 1. One important result of (S39) is the scaling
property of the diffusion function which can be reflected by a single variable function K 2 5( x)

u(z, t) =t u(z/t?,1) =t T K? pla/th), v =38/ (542)
The following properties of K, () will be used later (Mainardi et al. (2007))

K 5(—x) = K %(x) (S43)

+ 1-6/a)T(1+6/a) (140
{ oOOKfi, (¢)a’dz = pr((1 p(s/) )(1(+p+6){"()1+(,3;/c3)
(S44)

—min{a, 1} <R) <o, p= 0‘2—_&9

2 PROOFS OF THE PROPOSITION
2.1 Proof of Proposition 1

PROOF. Using equation (S38), we write that

o0

E[X(0)]] = f 2lPu(e, t)dz

—a0

= J f 12[° fo0(2, t4)qp(Ls, t)dt sd. (S45)

—o0 0

Now, using the discussion in Section and using ng(t*)(m) = exp (t*@bg(/{)) from 1i forD =1,
and x4, (k) = exp (t« Dy (k) for D + 1. After substituting in 1i we write that

5F(1 — %) cos (‘gr—of)

s 6
«)dx i D« . S46
ihﬁ‘ fa,9<x7t ) F(l . 5) COS (5271-) ( )

Using (S46) and (S37), we continue with the Laplace transform of the time-varying moment expression in

(S45]as

E[%‘é] = f |$‘ fa& oy t*)Qﬁ(t*, s)dtdx

Q0
s 5T(1 omb
= ft,;Dg )COS (37? ) sP=1 exp (—t*sﬂ> dt «
) — 8) cos (3)
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ot s T 1= DT (1+ ) cos (59 .
['(1 —§)cos (57“) '

: : g —(6E41 55 .
Using the inverse Laplace relation £~ 1{s ( « ) } = (IT’ and taking inverse Laplace transform on
Toa

both sides in (S47), we finally write the time-varying moment with order J as

6P(1—%)F(1+ )cos(5 9)

E[|X (1)) = 7+ D% I (348)
ri-46)r (1 + (5%) cos (%”)
[ |
2.2 Proof of Proposition 2
PROOF. Using equation (S38), we write that
®
E[X ()] = u(z, t)d
Or? Q0
= ngn NER fao(x, ts)qs(ts, t)dtda. (549)
J
-0 0

Now, using the discussion in Section|1.2.3] and using ¢y (t,) (k) = exp (t«0f(x)) from (S27) for D = 1,
and @ x 1,)(k) = exp (t. Dyl (k) for D # 1. After substituting in (S25), we write that

0

- _ s (1= 2)sin (37)
lmgn( D) al? foo(as )z = —£2D TR ($50)

Using (S50) and (S37), we continue with the Laplace transform of the time-varying signed moment
expression in (S49] as

o0 0O
E[X()®] - J f 2O fo o, 1) a5 (b, 5)dtada
—0 0

5 570
1+ a) sm( ) (S51)
n
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B

1 —(2+1)y _ _t°a
{s J T(1+65)
both sides in (S51)), we finally write the time-varying signed moment with order ¢ as

Using the inverse Laplace relation £~

, and taking inverse Laplace transform on

sT(1— 901+ 2)sin(%)

E[X (t)®] = 92 D& o) (S52)
X T(1—§)T(1 + 62)sin(%r)
|
2.3 Proof of Proposition 3
PROOF. Using equation (S38)), we write that
0
Ellog | X (¥)|]] = J log |x|u(x,t)dx
—00
o O
_ J J log 2] fug (2, ) q5(te, £)dtudlr. ($53)
-0 0

For writing the log moments, we observe that E[exp(tlog | X )] = E[|X|'], i.e., the moment generating
function of log | X | is the absolute moment of order ¢. Since we know the expression for absolute moments
of alpha stable distributions from Section|1.2.2] we use the following to write the log moments

E[(log | X])"] = lim ~—B[|X|’].

Using the similar procedure as mentioned in Kuruoglu (2001), we can write that

E[|X]°] = ¢(§)K°T (1 - g) cos(8R), (S54)
where,
. g s 0
c(0) =T'(1 + d)sinc (7> : K = (t.D)>, R = % (S55)
We then write that p
%E[\X(t*)\g] = h(0)E[| X (t.)°], (S56)

where,

h(8) = élog(t*D) + Cc,((g)) - ézp(O) (1 - g) — Rtan(0R),

and we have used the polygamma function as

() = L jog((a))

dz™
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Therefore, the expected log moment is written as

E[log | X (t.)]] = h(0) = élog(t*D) IORY (1 _ é) | (S57)

Using (S57) and (S37), we continue with the Laplace transform of the time-varying log moment expression

in (S53) as

Ellog | X ()] = log x| fa,0(x, t+)qa(ts, s)dtdx

< log(t. D) + ¢ (1) (1 - l)) s9 L exp <—t*sﬁ> dt . (S58)

(07

I
I

Now, using the Euler-Mascheroni constant and the following integral expression

log(x)e™*dx = —,

we can write the Laplace of the log moment as

EloelX0] = (24 u0ma- - 2) - Loy (559

Inverting the Laplace transform in (S59) using the identity £~! {log(s) } = —v — log(t), and using the fact

S

that 1»(9) (1) = —v, we have

Eflog | X (t)[] = glog(t) L loeD) (é - 1) . (S60)

« «

2.4 Proof of Proposition 4

PROOF. Using the similar approach as in proof of the Proposition 3 and as derived in [Kuruoglu (2001),
we can write that

var(log | X (t.)]) = vV (1) (2 + 1A (0 (S61)
& Y 2 « 200 )
Using the expression in (S61J), we can write the Laplace of the variance of log absolute values as
0
var(log | X (t)]) = ( var(log | X (t)])qs(ts, s)dt.
0
112 w0\ >
= Omy(z+2 ) (22 -1 <—t 5) t
f(@b ()(2+a) (204))8 exp ( —t«s” ) dts
—a0

10
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2 2 2

(@ @ (1 1 w0

9 (i) (2 2
6<2+a) (204)’ (562)

where in (a) we substitute the value of polygamma function (1 (1) = 72/6. [

2.5 Proof of Proposition 5

PROOF. Using equation (S38), we write that

E[(log| X (1)])*] (log |z)*u(z, t)dz

(log |])2 fap (2, t)q(ts, t)dtuda. (S63)

5‘3%8 é%g

Using the similar approach as in the proof of the Proposition 3, we can write the second moment of the log
absolute values of X (¢.), using (S57)) and (S61)), as the following

El(log |X(t:))?*] = (E[log|X(t:)[])* + var(log | X (t.)])

1 2c
= —5(log(t.))* + —log(ts) + k. (S64)

where, ¢ = log( ) 4 V(ﬂ 1)and k = ¢ + %2(% + éQ) — (2a) Using the expression in (S64), we can

write the Laplace of the second moment of the log absolute values as the following

E[(log | X (£)])] (log |21)* fa0(w, t+)ap(ts, s)dtuda

2
( (log (¢ 24 = log(ts) + k) P Lexp <—t*sﬁ> dt. (S65)
@

I
f

Now, using the Euler-Mascheroni constant and the following integral expressions

2 m
log?(x)e %dr = +* + —,

log(xz)e *dx = —, 5

we can write the Laplace of the second log moment as

Bltog ) = (k-2 (2 D)) L (B - 2 Rl

v« S Q@ Q@ S
210 2 S
% gs ) (S66)
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S

Inverting the Laplace transform in (S66)) using the identity £~ {log(s)} = —y —log(t), £ {log*(t)} =

2

o0 _ B2 P (B
Bllog X (0] = 3 tog*(t) + 22 (£~ 1) log(e) + 1, (567
where ¢ = 7 (L +3) — (32)° + (82 5 (2 -1)) 4 - ), m

3 NUMERICAL SIMULATIONS: DATA GENERATION

A Lévy process can be seen as the limit of a continuous random walk where the number of jumps
goes to infinite so both X (¢,) and 7'(¢.) can be simulated by a continuous random walk for a large
number of jumps (Gorenflo and Mainardi| (2012))). Define ¢,,, = n - A, and A, is a constant. Define
Ty =T(tn,) =T(n x Ay)and X,, = X(tn,) = X(n x Ay). X, — Xp—1 and 1), — T},—; are increments
of their Lévy processes so they are independent (condition [2), also, they have same distribution (condition
3[3). By adding the condition [I| we have

n
Xo=2xis n=>0, (S68)
i
X are i.i.d samples of an a-stable distribution with skewness parameter # and scale coefficient ¢ = (A*)(l/ a),
n
T,=>.7; n=0 (S69)
i

7 are i.i.d samples of an [-stable distribution with skewness parameter —( and scale coefficient ¢ =
(A*)(l/ﬂ). Finally, we have

X(t) = Xy N(t) =min{n: t <Tp}. (S70)

The MATLAB’s random function, which support stable distribution internally, is used to generate i.i.d
samples of a stable distribution. Notice that equations (S18]) has been used to change the parameterization.
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