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1 DEFINITIONS AND NOTATIONS
1.1 Fractional Derivatives
1.1.1 The Fourier transform and the Riesz-Feller space-fractional derivative

Let (S1) be the Fourier transform of a general function fpxq,

pfpκq “ Ftfpxqu “
ż `8

´8

eiκxfpxqdx, κ P R (S1)

and let (S2),

fpxq “ F´1
t pfpκqu “

1

2π

ż `8

´8

e´iκx pfpκqdκ, x P R (S2)

be the inverse Fourier transform. For a sufficiently well-behaved function fpxq we define the Riesz-Feller
space-fractional derivative of order α and skewness θ as

"

FtxDα
θ fpxq;κu “ ψθαpκq

pfpκq, ψθαpκq “ ´|κ|
αeipsignpκqqθπ{2

0 ă α ď 2, |θ| ď mintα, 2´ αu
(S3)

xDα
θ fpxq “

Γp1` αq

π
tsinrpα ` θqπ{2s

ż 8

0

fpx` ξq ´ fpxq

ξ1`α
dξ

` sinrpα ´ θqπ{2s

ż 8

0

fpx´ ξq ´ fpxq

ξ1`α
dξu.

(S4)

The symbol ψθαpκq is the logarithm of the characteristic function of a general Levy strictly stable probability
density with index of stability α and asymmetry parameter θ (improperly called skewness) according to
Feller’s parameterization.

1.1.2 The Laplace transform and the Caputo fractional derivative
Let

rfpsq “ Ltfptqu “
ż 8

0
e´stfptqdt, <psq ą af , (S5)

be the Laplace transform of a function fptq, and let

fptq “ L´1
tf̃psqu “

1

2πi

ż γ`i8

γ´i8
estf̃psqds, <psq “ γ ą af (S6)

where t ą 0 and af is a constant defined such that the product e´af t|fptq| is bounded for all t greater than
some T (i.e., the constant af exists provided the existence of the Laplace transform). For a sufficiently
well-behaved function fptq we define the Caputo time-fractional derivative of order β, p0 ă β ď 1q through

LttDβ
˚fptqu “ sβ rfpsq ´ sβ´1fp0`q, 0 ă β ď 1 (S7)
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Hence, we can write

tDβ
˚fptq “

"

1
Γp1´βq

şt
0
f p1qpτq
pt´τqβ

dτ, 0 ă β ă 1
d
dtfptq, β “ 1

. (S8)

1.2 Stable distribution: Sato et al. (1999); Nolan (2003); Feller (1962)
A non-degenerate random variable X is called stable if for all n ą 1, there exist constants cn ą 0 and

dn P R such that X1 ` ¨ ¨ ¨ ` Xn
d
“ cnX ` dn

1, where X1, X2, ¨ ¨ ¨ , Xn are i.i.d realizations of X . The
random variable X is strictly stable if and only if dn “ 0, @n. It can be shown that the only possible choice
for the scaling constants is cn “ n1{α for a certain value α P p0, 2s.

1.2.1 Parameterizations of stable laws:
There are different parameterizations for stable distribution. The variety of parameterizations is caused

by a combination of historical evolution, plus the numerous problems that have been analyzed applying
specialized forms of stable distributions.

1. A random variable X is stable if and only if X d
“ aZ ` b where a ‰ 0, b P R and Z is a random

variable with characteristic function (Nolan (2003))

ErexppiκZqs “
 expp´|κ|αr1´ iζ tan πα

2 psignκqsq α ‰ 1

expp´|κ|r1` iζ 2
π psignκq log |κ|sq α “ 1

, (S9)

where 0 ă α ď 2, ´1 ď ζ ď 1 2.
2. A random variable X is parameterized as Spα, ζ, c, µ; 1q if

Epexp piκXqq “ exppiκµ´ |cκ|αp1´ iζsignpκqΦ1qq, (S10)

where,

Φ1 “

"

tanpπα2 q α ‰ 1

´ 2
π log |κ| α “ 1

. (S11)

The distribution is assumed to be standard when the scale c “ 1 and the location µ “ 0 (Nolan (2003)).
3. A random variable X is Spα, ζ, γ, δ; 0q (Nolan (2003)) if

X
d
“

#

γ
`

Z ´ β tan πα
2

˘

` δ α ‰ 1

γZ ` δ α “ 1
, (S12)

where the Z is defined at (S9). This can also be rewritten as:

Epexp piκXqq “ exppiκδ ´ |γκ|αp1´ iζ signpκqΦ0qq, (S13)

where

Φ0 “

"

p1´ |γκ|1´αq tanpπα2 q α ‰ 1

´ 2
π log |γκ| α “ 1

. (S14)

This form (Spα, ζ, γ, δ; 0q) is continuous at α “ 0. Note that this form is the one used in MATLAB.

1 The symbol d
“ designates the equality in distribution.

2 The parameter ζ is usually called β but β is used to describe another parameter in this manuscript.
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4. Feller’s parameterization: (Sato et al. (1999); Feller (1962); Gorenflo and Mainardi (1999); Takayasu
(1990); Mainardi et al. (2007)) A random variable X is stable if and only if X d

“ aY ` b where
0 ă α ď 2, θ ď minpα, 2´ αq, a ‰ 0, b P R and Y is a random variable with characteristic function

Epexp piκY qq “ exppiψθαpκqq, (S15)

where ψθαpκq is given by (S3). It is also worth to mention that for b “ 0 the characteristic function of
X (which is strictly stable) is given as

Epexp piκXqq “ exp
´

iψθα

´κ

a

¯¯

“ exp
´

i|a|αψθα pκq
¯

. (S16)

For the sake of performing simulation using existing methods on MATLAB, we have to express the
Feller’s parameterization in the Spα, ζ, γ, δ; 0q form. First, we are interested in the strictly stable case
(δ “ ζγ tanpπα2 q) so we have

exppi|a|αψθαpκqq “ exp
´

iκζγ tan
´πα

2

¯

´ |γκ|αp1´ iζ signpκqΦq
¯

. (S17)

The above equation should be correct for any κ P R. Solving them (considering separate equation for
imaginary and real parts) gives

γ “ a

ˆ

cos

ˆ

πθ

2

˙˙1{α

ζ “ ´ tan

ˆ

πθ

2

˙

cot
´πα

2

¯

δ “ ζγ tan
´πα

2

¯

“ ´a tan

ˆ

πθ

2

˙ˆ

cos

ˆ

πθ

2

˙˙1{α

.

(S18)

1.2.2 Fractional order absolute moment
Suppose the characteristic function of random variableX is denoted as ϕXpκq “ ErexppiκXqs. Applying

the method described in (Harvill (2009)) and using its general result (S20), the fractional order absolute
moment of stable distributions are computed.
Define an auxiliary function ρp.q:

ρpδq “

ż 8

0
u´pδ`1q sin2

puqdu “

"

δ´12δ´1Γp1´ δq cospπδ{2q, if 0 ă δ ă 2, δ ‰ 1
π{2, if δ “ 1

. (S19)

The general result of (Harvill (2009)) is:

ρpδqEr|X|δs “ ´
1

4

ż 8

0
κ´pδ`1q

rϕXp2κq ` ϕXp´2κq ´ 2sdκ. (S20)

When X is a strictly stable random variable with decomposing the characteristic function as

ϕXpκq “ expt´zpκ
α
u and ϕXp´κq “ expt´znκ

α
u, κ ě 0 (S21)
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where,
zp “ exppiθπ{2q, zn “ expp´iθπ{2q. (S22)

Then

ρpδqEr|X|δs “
1

δ
2δ´2Γ

ˆ

1´
δ

α

˙

´

z
δ{α
p ` z

δ{α
n

¯

. (S23)

Therefore, the absolute moment of order δ is given as

Er|X|δs “
Γ
`

1´ δ
α

˘

cos
`

δπθ
2α

˘

Γp1´ δq cos
`

δπ
2

˘ . (S24)

1.2.3 Signed fractional order moment
Using the method provided in Kuruoglu (2001), the signed absolute moment or order δ for α-stable

distribution is written as follows. For δ P p´2,´1q Y p´1, 0q we have

ErXxδys “
1

2π

8
ż

´8

8
ż

´8

signpxq|x|δϕXpκqeiκxdxdκ

“
i

π

8
ż

0

8
ż

0

xδ sinpκxqdx pϕXpκq ´ ϕ
˚
Xp´κqq dt (S25)

“
i

π
Γp1` δq cos

ˆ

δπ

2

˙

8
ż

0

κ´1´δ
´

e´κ
αzp ´ e´κ

αzn
¯

dt

“
i

π
Γp1` δq cos

ˆ

δπ

2

˙„

1

α
Γ

ˆ

´
δ

α

˙ˆ

z
δ
α
p ´ z

δ
α
n

˙

“ ´
Γ
`

1´ δ
α

˘

sin
`

δπθ
2α

˘

Γp1´ δq sin
`

δπ
2

˘ . (S26)

As discussed in Kuruoglu (2001), the same result can be generalized to δ P r0, αs.

1.3 Lévy stable stochastic processes: Zolotarev (1986); Sato et al. (1999)
A one-dimensional stochastic process {Xptq; t ě 0} said to be a Lévy process if it satisfies the following

properties:

1. Xp0q a.s.“ 0.
2. Disjoint increments are mutually independent. It means that for any 0 ď t1 ă t2 ă ¨ ¨ ¨ ă tn ă 8 the

increments (Xpt2q ´Xpt1q, Xpt3q ´Xpt2q, . . . , Xptnq ´Xptn´1q) are mutually independent.
3. Stationary increments: for any s ă t,Xptq ´Xpsq is equal in distribution to Xpt´ sq.
4. The sample paths are Cádlág (Billingsley (2008)), meaning they are almost surely right-continuous

and have left limits at all time points.
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A process Xptq is said to be a strictly α´ stable process if it is a Lévy process which also satisfies the
scaling (self-similarity) property (i.e., the process pc Xpt c´αq; t ě 0q has the same distribution as Xptq for
every c ą 0 denoted as Xptq d

“ t1{αXp1q (Kyprianou (2006)).

One of the main property of a Lévy process is that its characteristic function has the following form

Erexppi κXptqqs “ expptΨpκqq. (S27)

This means that the stationary independent increments of process Xptq are i.i.d samples of a stable
distribution. In case of a one dimensional strictly α ´ stable process with asymmetric parameter θ, the
Ψpκq is equal to ψαθ pκq.

1.3.1 Space fractional diffusion: (Gorenflo and Mainardi (2012); Mainardi et al. (2007);
Leonenko et al. (2014))

One group of random processes that have a space fractional diffusion are the strictly α-stable processes.
Suppose the random process Xpt˚q is a strictly α-stable process for some 0 ă α ď 2 and 0 ď |θ| ď

minpα, 2 ´ αq. Then, according to (S27), the diffusion that is defined as fα,θpx, t˚q “ PtXpt˚q “
x|Xp0q “ 0u, has a Fourier transform equal to

pfα,θpκ, t˚q “ expp´t˚ ψ
θ
αpκqq, (S28)

where ψθαpκq is the same function defined at (S3). Taking the Laplace transform on t˚, the fractional order
PDE of the diffusion is achieved

pf̃α,θpκ, s˚q “
1

s˚ ` ψθαpκq
, (S29)

and then
´ ψθαpκq

pf̃α,θpκ, s˚q “ s˚
pf̃α,θpκ, s˚q ´ 1. (S30)

So
B

Bt˚
fα,θpx, t˚q “ xDα

θ tfα,θpx, t˚qu, t˚ ě 0

fα,θpx, 0q “ δpxq, x P R.
(S31)

1.3.2 Stable subordinator process: Meerschaert and Straka (2013); Leonenko et al. (2014)
A Subordinator process is defined as a Lévy process with non-decreasing sample paths. Suppose T pt˚q is

strictly β-stable3 process for some 0 ă β ď 1, and θ “ ´β. It can be shown that the condition θ “ ´β
(which is only feasible when 0 ă β ď 1) implies that the increments of the process T pt˚q are almost surely
non-negative, thus here we use the Laplace transform. The diffusion defined as rβpt, t˚q “ PtT pt˚q “
t|T p0q “ 0u, has a Laplace transform equal to

rrβps, t˚q “ expp´t˚s
β
q. (S32)

3 An α-stable process where α “ β
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1.3.3 Inverse subordinator: Meerschaert and Straka (2013); Gorenflo and Mainardi (2012)
Because T pt˚q is a monotonically increasing function, the inverse process (T˚ptq) is a well defined

function, which could be interpreted as the first hitting time.

T˚ptq “ inftτ |T pτq ě tu, (S33)

which can be used to write the following properties.

t2 ą t1 ùñ T˚pt2q ě T˚pt1q,

PpT˚ptq ď t˚q “ PpT pt˚q ě tq. (S34)

Define qβpt˚, tq “ PtT˚ptq “ t˚|T˚p0q “ 0u. Using the property in (S34):

ż t˚

0
qβpt

1
˚, tqdt

1
˚ “

ż 8

t
rβpt

1, t˚qdt
1. (S35)

So

qβpt˚, tq “
B

Bt˚

ż 8

t
rβpt

1, t˚qdt
1
“

ż 8

t

B

Bt˚
rβpt

1, t˚qdt
1. (S36)

Then
rqβpt˚, sq “

´1

s

B

Bt˚
rrβps, t˚q “ sβ´1 expp´t˚s

β
q. (S37)

1.4 Space-Time fractional diffusion: Gorenflo and Mainardi (2012), Mainardi et al.
(2007), Saichev and Zaslavsky (1997),Gorenflo et al. (2000), Scalas et al. (2000),
Metzler and Klafter (2000)

Suppose Xpt˚q is a strictly α-stable process and T pt˚q is a subordinator process. The process Xptq “
XpT˚ptqq is called a subordinated Leonenko et al. (2014) process if T˚ptq be the inverse process of the
subordinator process (T pt˚q) 4. Define a diffusion function upx, tq “ PtXptq “ xu, hence a direct result
of the definition is

upx, tq “

ż 8

0
fα,θpx, t˚qqβpt˚, tqdt˚, (S38)

where fα,θpx, t˚q and qβpt˚, tq defined in previous section. Using the Laplace and Fourier transform, the
aforementioned expression can be simplified

pũpκ, sq “

ż 8

0

pfα,θpκ, t˚qrqβpt˚, sqdt˚

“

ż 8

0
rexpp´ψθαpκqqsrs

β´1 expp´t˚s
β
qsdt˚

“
sβ´1

sβ ` ψθαpκq
.

(S39)

4 t˚ is named operational time while t is called physical/regular time
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Then,
sβprupκ, sq ´ sβ´1

“ ´ψθαpκq
p

rupκ, sq. (S40)

Thus,
tDβ
˚upx, tq “ xDα

θ upx, tq, upx, 0q “ δpxq, x P R, t ě 0, (S41)

where 0 ă α ď 2, |θ| ď mintα, 2 ´ αu and 0 ă β ď 1. One important result of (S39) is the scaling
property of the diffusion function which can be reflected by a single variable function Kθ

α,βpxq

upx, tq “ t´γupx{tγ , 1q “ t´γKθ
α,βpx{t

γ
q, γ “ β{α. (S42)

The following properties of Kθ
α,βpxq will be used later (Mainardi et al. (2007))

Kθ
α,βp´xq “ K´θα,βpxq (S43)

#

ş`8

0 Kθ
α,βpxqx

δdx “ ρ Γp1´δ{αqΓp1`δ{αqΓp1`δq
Γp1´ρδqΓp1`ρδqΓp1`βδ{αq

´mintα, 1u ă <pδq ă α, ρ “ α´θ
2α .

(S44)

2 PROOFS OF THE PROPOSITION
2.1 Proof of Proposition 1

PROOF. Using equation (S38), we write that

Er|Xptq|δs “

8
ż

´8

|x|δupx, tqdx

“

8
ż

´8

8
ż

0

|x|δfα,θpx, t˚qqβpt˚, tqdt˚dx. (S45)

Now, using the discussion in Section 1.2.2, and using ϕXpt˚qpκq “ exp
`

t˚ψ
θ
αpκq

˘

from (S27) for D “ 1,
and ϕXpt˚qpκq “ exp

`

t˚Dψ
θ
αpκq

˘

for D ‰ 1. After substituting in (S21), we write that

8
ż

8

|x|δfα,θpx, t˚qdx “ t
δ
α
˚ D

δ
α

Γ
`

1´ δ
α

˘

cos
`

δπθ
2α

˘

Γp1´ δq cos
`

δπ
2

˘ . (S46)

Using (S46) and (S37), we continue with the Laplace transform of the time-varying moment expression in
(S45 as

ČEr|Xptq|δs “

8
ż

´8

8
ż

0

|x|δfα,θpx, t˚qqβpt˚, sqdt˚dx

“

8
ż

0

t
δ
α
˚ D

δ
α

Γp1´ δ
αq cos

`

δπθ
2α

˘

Γp1´ δq cos
`

δπ
2

˘ sβ´1 exp
´

´t˚s
β
¯

dt˚
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“ s´pδ
β
α`1qD

δ
α

Γ
`

1´ δ
α

˘

Γ
`

1` δ
α

˘

cos
`

δπθ
2α

˘

Γp1´ δq cos
`

δπ
2

˘ . (S47)

Using the inverse Laplace relation L´1ts
´

´

δ βα`1
¯

u “ tδ
β
α

Γ
´

1`δ βα

¯ , and taking inverse Laplace transform on

both sides in (S47), we finally write the time-varying moment with order δ as

Er|Xptq|δs “ tδ
β
αD

δ
α

Γ
`

1´ δ
α

˘

Γ
`

1` δ
α

˘

cos
`

δπθ
2α

˘

Γp1´ δqΓ
´

1` δ βα

¯

cos
`

δπ
2

˘

. (S48)

�

2.2 Proof of Proposition 2

PROOF. Using equation (S38), we write that

ErXptqxδys “

8
ż

´8

xxδyupx, tqdx

“

8
ż

´8

8
ż

0

signpxq|x|δfα,θpx, t˚qqβpt˚, tqdt˚dx. (S49)

Now, using the discussion in Section 1.2.3, and using ϕXpt˚qpκq “ exp
`

t˚ψ
θ
αpκq

˘

from (S27) for D “ 1,
and ϕXpt˚qpκq “ exp

`

t˚Dψ
θ
αpκq

˘

for D ‰ 1. After substituting in (S25), we write that

8
ż

8

signpxq|x|δfα,θpx, t˚qdx “ ´t
δ
α
˚ D

δ
α

Γ
`

1´ δ
α

˘

sin
`

δπθ
2α

˘

Γp1´ δq sin
`

δπ
2

˘ . (S50)

Using (S50) and (S37), we continue with the Laplace transform of the time-varying signed moment
expression in (S49 as

ČErXptqxδys “

8
ż

´8

8
ż

0

xxδyfα,θpx, t˚qqβpt˚, sqdt˚dx

“ ´

8
ż

0

t
δ
α
˚ D

δ
α

Γ
`

1´ δ
α

˘

sin
`

δπθ
2α

˘

Γp1´ δq sin
`

δπ
2

˘ sβ´1 expp´t˚s
β
qdt˚

“ ´s
´

´

δ βα`1
¯

D
δ
α

Γ
`

1´ δ
α

˘

Γ
`

1` δ
α

˘

sin
`

δπθ
2α

˘

Γp1´ δq sin
`

δπ
2

˘ . (S51)
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Using the inverse Laplace relation L´1ts´pδ
β
α`1qu “ tδ

β
α

Γp1`δ βα q
, and taking inverse Laplace transform on

both sides in (S51), we finally write the time-varying signed moment with order δ as

ErXptqxδys “ ´tδ
β
αD

δ
α

Γp1´ δ
αqΓp1`

δ
αq sinpδπθ2α q

Γp1´ δqΓp1` δ βαq sinpδπ2 q
. (S52)

�

2.3 Proof of Proposition 3

PROOF. Using equation (S38), we write that

Erlog |Xptq|s “

8
ż

´8

log |x|upx, tqdx

“

8
ż

´8

8
ż

0

log |x|fα,θpx, t˚qqβpt˚, tqdt˚dx. (S53)

For writing the log moments, we observe that Erexppt log |X|qs “ Er|X|ts, i.e., the moment generating
function of log |X| is the absolute moment of order t. Since we know the expression for absolute moments
of alpha stable distributions from Section 1.2.2, we use the following to write the log moments

Erplog |X|qns “ lim
δÑ0

dn

dδn
Er|X|δs.

Using the similar procedure as mentioned in Kuruoglu (2001), we can write that

Er|X|δs “ cpδqKδΓ

ˆ

1´
δ

α

˙

cospδRq, (S54)

where,

cpδq “ Γp1` δqsinc
ˆ

πδ

2

˙

, K “ pt˚Dq
δ
α , R “

πθ

2α
. (S55)

We then write that
d

dδ
Er|Xpt˚q|δs “ hpδqEr|Xpt˚q|δs, (S56)

where,

hpδq “
1

α
logpt˚Dq `

c1pδq

cpδq
´

1

α
ψp0q

ˆ

1´
δ

α

˙

´R tanpδRq,

and we have used the polygamma function as

ψpn´1q
pxq “

dn

dxn
logpΓpxqq
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Therefore, the expected log moment is written as

Erlog |Xpt˚q|s “ hp0q “
1

α
logpt˚Dq ` ψ

p0q
p1q

ˆ

1´
1

α

˙

. (S57)

Using (S57) and (S37), we continue with the Laplace transform of the time-varying log moment expression
in (S53) as

ČErlog |Xptq|s “

8
ż

´8

8
ż

0

log |x|fα,θpx, t˚qqβpt˚, sqdt˚dx

“

8
ż

0

ˆ

1

α
logpt˚Dq ` ψ

p0q
p1q

ˆ

1´
1

α

˙˙

sβ´1 exp
´

´t˚s
β
¯

dt˚. (S58)

Now, using the Euler-Mascheroni constant and the following integral expression

8
ż

0

logpxqe´xdx “ ´γ,

we can write the Laplace of the log moment as

ČErlog |Xptq|s “

ˆ

logpDq

α
` ψp0qp1qp1´

1

α
q ´

γ

α

˙

1

s
´

β

αs
logpsq. (S59)

Inverting the Laplace transform in (S59) using the identity L´1
!

logpsq
s

)

“ ´γ ´ logptq, and using the fact

that ψp0qp1q “ ´γ, we have

Erlog |Xptq|s “
β

α
logptq `

logpDq

α
` γ

ˆ

β

α
´ 1

˙

. (S60)

�

2.4 Proof of Proposition 4

PROOF. Using the similar approach as in proof of the Proposition 3 and as derived in Kuruoglu (2001),
we can write that

varplog |Xpt˚q|q “ ψp1qp1q

ˆ

1

2
`

1

α

2˙

´

ˆ

πθ

2α

˙2

. (S61)

Using the expression in (S61), we can write the Laplace of the variance of log absolute values as

Čvarplog |Xptq|q “

8
ż

´8

varplog |Xptq|qqβpt˚, sqdt˚

“

8
ż

´8

˜

ψp1qp1q

ˆ

1

2
`

1

α

2˙

´

ˆ

πθ

2α

˙2
¸

sβ´1 exp
´

´t˚s
β
¯

dt˚

10
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paq
“

π2

6

ˆ

1

2
`

1

α

2˙

´

ˆ

πθ

2α

˙2

, (S62)

where in paq we substitute the value of polygamma function ψp1qp1q “ π2{6. �

2.5 Proof of Proposition 5

PROOF. Using equation (S38), we write that

Erplog |Xptq|q2s “

8
ż

´8

plog |x|q2upx, tqdx

“

8
ż

´8

8
ż

0

plog |x|q2fα,θpx, t˚qqβpt˚, tqdt˚dx. (S63)

Using the similar approach as in the proof of the Proposition 3, we can write the second moment of the log
absolute values of Xpt˚q, using (S57) and (S61), as the following

Erplog |Xpt˚q|q
2
s “ pErlog |Xpt˚q|sq

2
` varplog |Xpt˚q|q

“
1

α2
plogpt˚qq

2
`

2c

α
logpt˚q ` k, (S64)

where, c “ logpDq
α ` γpβα ´ 1q and k “ c2 ` π2

6 p
1
2 `

1
α

2
q ´ pπθ2αq

2. Using the expression in (S64), we can
write the Laplace of the second moment of the log absolute values as the following

ČErplog |Xptq|q2s “

8
ż

´8

8
ż

0

plog |x|q2fα,θpx, t˚qqβpt˚, sqdt˚dx

“

8
ż

0

ˆ

1

α2
plogpt˚qq

2
`

2c

α
logpt˚q ` k

˙

sβ´1 exp
´

´t˚s
β
¯

dt˚. (S65)

Now, using the Euler-Mascheroni constant and the following integral expressions

8
ż

0

logpxqe´xdx “ ´γ,

8
ż

0

log2
pxqe´xdx “ γ2

`
π2

6
,

we can write the Laplace of the second log moment as

ČErplog |Xptq|q2s “

ˆ

k ´
2c

γ
`

1

α2

ˆ

γ2
`
π2

6

˙˙

1

s
`

ˆ

2βγ

α2
´

2βc

α

˙

logpsq

s

`
β2

α2

log2
psq

s
. (S66)
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Inverting the Laplace transform in (S66) using the identity L´1
!

logpsq
s

)

“ ´γ ´ logptq, L
 

log2
ptq

(

“

1
s

´

γ2 ` π2

6

¯

` 2γ logpsq
s `

log2psq
s , we have

Erplog |Xptq|q2s “
β2

α2
log2

ptq ` 2
βγ

α

ˆ

β

α
´ 1

˙

logptq ` c1, (S67)

where c1 “ π2

6

`

1
α2 `

1
2

˘

´
`

πθ
2α

˘2
`

´

logpDq
α ` γ

´

β
α ´ 1

¯¯2
` π2

6α2 p1´ β
2q. �

3 NUMERICAL SIMULATIONS: DATA GENERATION
A Lévy process can be seen as the limit of a continuous random walk where the number of jumps
goes to infinite so both Xpt˚q and T pt˚q can be simulated by a continuous random walk for a large
number of jumps (Gorenflo and Mainardi (2012)). Define tn˚ “ n ¨ ∆˚ and ∆˚ is a constant. Define
TN “ T ptn˚q “ T pnˆ∆˚q and Xn “ Xptn˚q “ Xpnˆ∆˚q. Xn´Xn´1 and Tn´ Tn´1 are increments
of their Lévy processes so they are independent (condition 2), also, they have same distribution (condition
3 3). By adding the condition 1 we have

Xn “

n
ÿ

i

χi; n ě 0, (S68)

χ are i.i.d samples of an α-stable distribution with skewness parameter θ and scale coefficient c “ p∆˚qp1{αq.

Tn “
n
ÿ

i

τi; n ě 0, (S69)

τ are i.i.d samples of an β-stable distribution with skewness parameter ´β and scale coefficient c “
p∆˚q

p1{βq. Finally, we have

Xptq “ XNptq; Nptq “ mintn : t ď Tnu. (S70)

The MATLAB’s random function, which support stable distribution internally, is used to generate i.i.d
samples of a stable distribution. Notice that equations (S18) has been used to change the parameterization.
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