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Extended Methods 

Sample collection, processing and metadata  

Naturally infected C. parvum hosts spanning the parasite ontogenetic development were searched 

among snails (Potamopyrgus antipodarum), amphipods (Paracalliope fluviatilis), and fish 

(Gobiomorphus cotidianus) collected from Lake Waihola, South Island, New Zealand during the 

2019 austral summer. Samples were collected at two time points (3 days apart) under an approved 

Animal Use Protocol from the University of Otago (AUP-18-233). Immediately prior to animal 

collection, two types of environmental samples were collected, i.e. water (two samples) and lake 

sediment (two samples collected from where snails were collected), by immersing a sterile cotton 

swab and swirling it for a few seconds in lake water and substrate surface, respectively, breaking 

the tip and saving it in a PowerBead Pro Tube (QIAGEN), changing sterile gloves between each 

sample collection. Two controls for the swabs themselves were also taken by opening the swab and 

exposing it to natural air prior to saving it in a PowerBead Pro Tube. Environmental and control 

samples were snap frozen and kept in a -80ºC freezer. Waihola lake water was also collected into 

sterile containers for maintenance of specimens in the laboratory until processing.  

In the laboratory, snails were placed in individual sterile wells with lake water, and 

incubated for two days at 25ºC under light to identify C. parvum-infected individuals through 

cercarial shedding. Amphipods were individually placed in sterile wells containing water and 

screened under the microscope for signs of infection (Lagrue & Poulin, 2007). Fish were kept alive 

in aerated lake water until further processing. Within each group, host and parasite specimens were 

a priori randomly selected using the function sample from the R package (R Core Team, 2018).  

All dissections were conducted in a sterile laminar flow cabinet, and between each sample 

tools were cleaned with bleach, and sterilised with ethanol and burning flame. Prior to dissections, 

two samples were taken with sterile swabs of the water in which each host species were kept, to 

serve as controls for contamination within the laboratory environment. Snails were brushed with 

sterile interdental brush in 99% EtOH, and rinsed thoroughly in heat-sterilised PBS prior to 

dissections. From the eight infected snails, we successfully isolated sporocysts (two per snail from 

eight snails, n= 16), cercariae (three per snail from three of the eight snails, n = 9) and snail tissue 



(adjacent to parasite tissue but free of it from five snails; n = 5). Amphipods were rinsed thoroughly 

in a series of 70%, and 99% EtOH, and then PBS. Metacercariae (1-3 per amphipod, n = 12) and 

amphipod tissue (whole body after parasite removal; n = 6) were collected. Fish were euthanised 

with an overdose of MS-222, and placed individually in sterile petri dishes. Before dissection, fish 

were brushed with Betadine (Sanofi) to prevent contamination of the body cavity with skin 

microbes. Their intestinal tract was aseptically removed from the abdominal cavity, and opened to 

find adult parasites. Adult worms (1-3 per fish, n = 10) and fish tissue (clean of parasites and 

contents, n = 5) were collected. All tissue samples, both parasite and host, were cleaned from 

surface microbiota by pipetting up and down in PBS in sterile wells. Samples of the surface 

micriobiota for each sample type was collected by pipetting 75ul of the resulting 'washing' (two 

samples per host type and parasite life stage). For each host group a sample of the PBS solution was 

taken at the end of the procedures to account for any possible contamination of the solution. 

Samples were snap frozen and kept in a -80ºC freezer until DNA isolation. Metadata on sample 

type (e.g. environmental, host type, parasite, controls), life stage (e.g. sporocyst, metacercaria), and 

host ID are given in Table S1. 

  

Library preparation and Microbiome sequencing 

DNA was extracted using the DNeasy PowerSoil Pro Kit (QIAGEN), following the manufacturer's 

protocol, with modifications recommended for cells difficult to lyse by the EMP DNA Extraction 

Protocol (Marotz et al., 2017). Together with the isolated biological samples, two ZymoBIOMICS 

microbial community standards samples (MCS: 75 µl and 37.5 µl) containing microbes of varying 

size and cell wall recalcitrance (eight bacteria and two yeasts), and one reagent-only sample were 

also extracted to assess the performance and contamination of our workflow, respectively. Order of 

extraction was randomised as described above, to the exception of the reagent-only sample which 

was last. All samples were eluted in 100 µl of solution C6 and stored at -20ºC until needed. 

DNA libraries for each sample were prepared following EMP 16S Illumina Amplicon 

Protocol to amplify prokaryotes using paired-end community sequencing. The V4 hypervariable 

region of the prokaryotic bacterial 16S SSU rRNA gene was PCR-amplified and multiplexed using 

the universal bacterial primers 515F (Parada) - 806R (Apprill) (Apprill et al., 2015; Parada et al., 

2016). Together with the biological samples of interest, one additional control sample of 0.2ng of 

the ZymoBIOMICS microbial community DNA standards (MCS DNA) and a reagent-only sample 

were also included. Again, sample order on the PCR plate was randomized, with the exception of 

the reagent-only sample PCR sample which was last. Samples were amplified in triplicate in a 20 µl 

mix composed of 5.6 µl of ultrapure water, 10 µl of MyFiTM mix (Bioline), 8 µM of each primer 

and 2 µl of DNA template. The PCR conditions consisted of an initial denaturation step of 3 min at 



95°C and 35 cycles, each consisting in one cycle of 45 s at 95°C, 60 s at 50°C, and 90 s at 72°C, 

followed by a final extension cycle of 10 min at 72ºC. Triplicate libraries of each sample were 

pooled and run on a 2% agarose gel. We then used a quantitative binding approach to clean and 

normalise each amplicon with SequalPrep Kit (Invitrogen) following the manufacturer's protocol. 

This protocol requires that DNA is present in excess (≥250 ng) for accurate normalization; given 

that several samples were below this requirement, we quantified DNA concentration with QuBit 

with 1X dsDNA HS Assay Kit (Invitrogen). Each amplicon library was then manually diluted to the 

lowest measured concentration of biological samples, and equal volumes of amplicons were 

combined in a single tube to construct the final libraries pool. Due to the low concentration 

expected (~0.2 ng/µl), 283.66 µl of the pool was concentrated to 107 µl using a Concentrator Plus 

(Eppendorf) at 45ºC for 30 min. The DNA concentration of this pool of libraries was quantified 

with QuBit (as above), and the average molecule length was determined using the Agilent 2100 

bioanalyzer instrument (Agilent DNA 1000 Reagents). Combined barcoded libraries were 

sequenced on an Illumina MiSeq platform using the V2 reagent cartridge (250 bp, paired-end) 

through Otago Genomics & Bioinformatics Facility (New Zealand). 

 

Sequence processing 

Data were received as demultiplexed paired-end raw sequences, and were processed and analysed 

using the Quantitative Insights Into Microbial Ecology (QIIME) 2 software package (Bolyen et al., 

2019). Adapters and primers were removed from raw sequences using the plugin cutadapt (with 0 

error-rate and minimum length of 240 bp) (Martin, 2011), and quality filtered using dada2 plugin 

(Callahan et al., 2016) after inspection of quality profile plots of forward and reverse reads. Based 

on quality profiles, the first thirteen bases and last ten nucleotides of the forward and reverse were 

trimmed to avoid errors typically associated with these regions and improve the dada 2 algorithm's 

sensitivity. The resulting amplicon sequence variants (ASVs) were then filtered to remove non-

bacterial contaminant sequences (i.e. host sequences). Exclusion was determined by alignment 

using threshold values of 0.8 identity and 0.8 query alignment against the Greengenes 16S rRNA 

reference sequences (99 OTUS, 13_8 release) using the quality-control plugin. ASVs excluded 

were checked to determine their identity in BLAST. ASVs corresponding to mitochondria or 

chloroplast, or without a phylum assignment were further excluded from the data. Contaminants 

were removed by filtering ASVs found in blanks (e.g. PCR blank, swab control, PBS controls and 

extraction blank) using the feature-table plugin. While this methodology does not remove 

contaminants which could possibly originate from cross-contamination during sample processing, 

data filtered with decontam R package (Davis et al., 2017) contained more contaminants as assessed 

in the MCS quality check analyses (data not shown). We further explored potential sources of 



contamination during the incubation period of snail, amphipod and fish by excluding all ASVs 

present exclusively in laboratory water controls as identified by comparing with ASVs from natural 

environmental samples (using the function 'anti-join' from the dplyr R package v. 0.8.3 (Wickham 

et al., 2019), and using the feature-table plugin from QIIME2). Finally, the obtained feature table 

was filtered to remove samples with low sequencing depth (i.e. frequency lower than 1,000, and/or 

with less than 8 features). A 'reduced dataset' which did not include ASVs not shared by at least two 

samples (feature-table plugin) was also created. For analyses regarding the diversity of parasite-

associated microbial communities, these two datasets were further filtered to include only those 

samples extracted from parasite tissues. For each dataset different taxonomic levels were assigned 

to the ASVs using the plugin feature-classifier (Bokulich et al., 2018) against the Greengenes 16S 

rRNA reference database (13_8 release) pre-trained on the 515F/806R region (Pedregosa et al., 

2011). Taxonomic barplots were created with the plugin taxa barplot (). 

Sequenced data quality was evaluated based on the observed composition and sequence 

quality of the ZymoBIOMICS microbial community standards (MCS and MCS DNA), against the 

expected data of these mock communities, using q2-quality-control plugin. This analysis allowed us 

to assess how well our methods and pipeline estimate the microbial community present in the 

samples. The analyses were performed on data still with contaminants found in blanks and without 

them (see above for methods for exclusion of contaminants). First, we estimated if there were any 

mismatches between the observed sequences and the set of MSC reference sequences as a measure 

of sequencing errors. Then, we assessed the level of community accuracy by comparing the 

observed and expected sample composition. These analyses also allowed us to determine taxonomic 

classification accuracy, i.e the lowest taxonomic level as determined by the taxonomic classifier 

that was correctly attributed or below which there were under-classifications. 

 

Diversity analyses.  

Diversity analyses were performed primarily using QIIME 2, and the R packages vegan v. 2.5-6 

(Oksanen et al., 2019) and phyloseq v. 1.22.3 (McMurdie & Holmes, 2013) with default function 

settings unless otherwise noted. Prior to analyses, ASVs were aligned using the mafft program 

(Katoh et al., 2002) and used to construct a phylogenetic tree using the fasttree2 program (Price et 

al., 2010) using the phylogeny plugin. For analysis, the filtered ASVs and taxonomy tables, and the 

rooted tree were imported into R with the qiime2R package v. 0.99.12 (Bisanz, 2018) and together 

with the metadata combined into a phyloseq object.  Given that one of the sources of potential 

'noise' in metabarcoding analysis is the fine-scale data (here ASVs), analyses were also performed 

at the higher taxonomic ranks Phylum and Family using the agglomeration phyloseq function 

tax_glom. Phyloseq objects were evenly subsampled using rarefy_even_depth(). 



We started by investigating the presence of a 'core' microbiome common to all parasite life 

stages, and specific to each life stage. First, Venn diagrams were created at the family level with an 

online tool (http://bioinformatics.psb.ugent.be/webtools/Venn/). We tested for the presence of a 

'core' microbiome as defined by any taxon with a prevalence higher than 0.95, 0.75 or 0.50 with the 

microbiome package v. 0.99.87 (Lahti & Shetty, 2012-2019) with the core function (detection = 0). 

Core heatmaps were created with the function plot_core() using absolute counts. To infer which 

families had a higher relative abundance among life stages, we created heatmaps using 

plot_ts_heatmap() of the mctoolsr package v. 0.1.1.2 (Leff, 2017). A tree plot was created over the 

full tree estimated from the alignment of parasite ASVs using plo_tree() to visualise how 

microbiota components of the different life stages relate to each other, and how the life stages relate 

to each other. 

The diversity within each parasite life stage (alpha diversity) was calculated using the 

following metrics: Faith's phylogenetic diversity, evenness and Shannon using the QIIME 2 alpha-

group-significance plugin. The Kruskal–Wallis test was used to calculate pairwise comparisons 

between alpha diversity estimates among life stages.  

To test whether life stages differ in community composition (beta diversity), we used 

phylogenetic-based indices which are useful even with low sequence coverage (Lemos et al., 2011), 

but also given that phylogenetic information is relevant to the questions in our study. Specifically, 

the qualitative unweighted Unifrac (Lozupone & Knight, 2005) and quantitative weighted UniFrac 

(Lozupone et al., 2007) distance metrics were calculated with distance(). First, to explore the 

structure of microbial communities, principal coordinates plots (PCoA) were created with 

plot_ordination() adding hulls as defined with find_hull() from the erictools package 

(https://rdrr.io/github/elittmann/erictools/man/find_hull.html). Statistically significant differences 

among life stages were determined with permutational ANOVA performed with adonis and with 

multilevel pairwise comparisons with pairwise.adonis() with Benjamini and Hochberg’s (1995) 

(“BH-FDR”) correction for multiple testing with 9999 permutations. Permutational ANOVA 

assumes that there is sufficient homogeneity of dispersion within sample types. This was evaluated 

with betadisper(). We further explored if there were differential abundances of bacterial phylotypes 

between consecutive life stages with DESeq2 v. 1.18.1 (Love et al., 2014). For this the non-rarefied 

phyloseq object was used as input into DESeq2 for differential abundance analysis with 

phyloseq_to_deseq2() and using geoMeans to estimate size factors. DESeq() was called with default 

parameters, and results were contrasted by life stage, and an adjusted p-value cut-off of 0.05 was 

used for differences in relative abundances to be considered statistically significant. 

 

Sources of parasite microbiome 



We tested whether the parasite’s microbial composition differed from that of its different hosts and 

environment using the same diversity analyses as described above. Using Venn diagrams, we 

determined if there were any taxa unique to the parasite bacterial community, irrespective of their 

abundances and prevalence. 

To determine the likely main sources of each life stage microbiome, we used the Bayesian 

approach SourceTracker developed for R (Knights et al., 2011). For each parasite life stage 

(classified as ‘sink’), we used SourceTracker to estimate the proportion of bacteria originating from 

potential ‘sources’: environmental samples (water and sediment, and laboratory environment), the 

host, the prior parasite life stage, or unknown sources (representing one or more sources absent 

from the training data) using the ASV data of the reduced dataset with a rarefaction of 1,000. 

Samples were classified as sources (potential contributors to a given microbial community) or sinks 

(the community being investigated), and a total of four analyses were conducted (one per life stage). 

Alpha values were first tuned using cross-validation with tune.st(), and SourceTracker object was 

then trained using samples identified as source with sourcetracker(). We then predicted for each 

sink and their respective sources training data, the proportional contribution of sources with 

predict(). Bar plots were created over the mean and standard deviation of the resulting proportion 

estimates of contributing sources for each parasite life stage, and also for the respective train data 

with ggplot2 v. 3.2.1 (Wickham, 2016). 

 

 



Supplementary Results 

Quality control: Is there any bias in DNA extraction and/or sequence quality? 

The protocol blank samples (n = 7) contained 102 ASVs (58 of which unique to the blanks) which 

were all removed from the sample dataset. Additionally, 813 ASVs were found in the water where 

samples were held in the laboratory at the time of isolation, but not present in the natural 

environment, and as a consequence were also excluded from the dataset. 

Quality control analyses based on the observed and expected MSC (performed on data still 

with blank features), did not detect bias in extraction and amplification of the different bacteria 

composing the MSC, since all eight bacteria (three Gram-negative and five Gram-positive) were 

successfully amplified. Sequence quality analysis did not detect any errors in sequencing, since all 

expected MSC were observed with zero sequence mismatches (Fig. S1A, Table S8). Analysis 

performed on data which still included features found in blanks, revealed three additional features 

that were classified as contaminants. However, after exclusion of contaminants found in blanks, 

four component taxa of MSC community composition were missing, while one taxon classified as a 

false positive (possibly a contaminant) was still present in the data. Taxonomic assessment based on 

Greengenes 16S rRNA reference database revealed bias in classification below the family level 

with 7 of the nine features being underclassified (Fig S1B). Given this result, only family level 

classification is given even when referring to ASVs. 

 
Figure S1. (A) Mismatches between false positives and expected ASVs from the raw data (post 
dada 2 processing, but prior to removal of contaminants). The eight expected taxa from the 
ZymoBIOMICS microbial community standards were all found (two strands of Salmonella 
enterica, 16S_1 and 16S_6 were retrieved) with 100% percentage of identity and zero mismatches 
between observed and expected sequences. The three false positives were observed. (B) Linear 
regression between observed and expected abundances based on classification with Greengenes 16S 
rRNA reference sequences (99 OTUS, 13_8 release). 
 
 



 
 
 
Does the microbial community of the parasite differ from that of the environment and hosts? 

 

 
 
Figure S2. Principal coordinates analyses ordinations based on unweighted and weighted unifrac 
over the reduced dataset, with hulls delimiting each life stage group of samples; results of 
permutational ANOVA test also shown. 
 
Parasite 'core' microbiome — Reduced dataset 

For the reduced dataset, only one family had a prevalence higher than 0.5 (Comamonadaceae) 

across all microbial communities in parasite samples. 

Life stage-specific 'core' analysis revealed higher prevalence values at a finer scale (i.e. 

ASVs), between 0.75 and 0.5 for all life stages in the reduced dataset with the exception of 

cercariae [reduced dataset: three for sporocysts (Bradyrhizobiaceae, Methylobacteriaceae and 

Comamonadaceae), none for metacercariae, and two for adult worms (Comamonadaceae and 

Bacillaceae)]. 

 

Comparing microbial abundance between life stages 

Pairwise comparisons between consecutive life stages identified from 195 ASVs with nonzero read 

count that between adult and metacercaria, one taxon was significantly less abundant in 

metacercaria stage (Ruminococcaceae; for the reduced dataset there were four out of 49 with 

nonzero read count: Ruminococcaceae sp., Chitinophagaceae, Neisseriaceae and 

Corynebacteriaceae). Only in estimates based on the reduced dataset did we find differential 

abundances between adult and sporocyst stage, where the adult had one taxa out of 49 with higher 

abundance (Ruminococcaceae). Estimation of differential abundance at family level revealed that 



from 80 families with nonzero read count, cercariae have significantly higher abundance of 

Cryomorphaceae than metacercariae, and again metacercariae had significantly lower abundance of 

Ruminococcaceae and Fusobacteriaceae (for the reduced dataset only Ruminococcaceae) than in the 

adult stage. 

 

Comparing microbial diversity between inside versus outside of parasites  

There were no significant differences between the diversity of bacterial communities of each 

parasite life stage and those of their respective surface microbiota, with the exception of 

metacercariae in which the surface microbiota had higher evenness (H =4.418, p = 0.036, but BH-

FDR = 0.177). Similarly, using principal coordinate analysis on unweighted and weighted Unifrac 

distances, no difference in microbial communities was found between the four life stages and the 

microbiota living on their outer surfaces (p > 0.05). 

 

Which is the main source of each parasite life stage? 

 
 

Figure S3. Results from SourceTracker source samples training. For each source in each analysis, 

the proportion of correct assignment to the known identity or other sources is given. Arrows 

indicate the correct classification for each source during training; in most cases, the correct source 

was the most frequently assigned. 
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