

Appendix: the derivation of spectral amplification factor and signal-to-noise ratio

According to the linear approximation theory, the output spike train of the Eq. (5) in the time domain has the form

4
$$y_i(t) = y_i^0(t) + R(\overline{\mu}, D, t) * (f(t) - \langle f(t) \rangle_0 + s(t))$$
 (A1)

- where $y_i^0(t)$ represents a realization of the spike train generated by the integrate-and-fire neuron obeying Eq.
- 6 (A1) in the absence of the time-dependent perturbation, * denotes the convolution, $\overline{\mu} = \mu + \langle f(t) \rangle_0$ is the base
- 7 current, $R(\overline{\mu}, D, t)$ is the base current and noise level-dependent linear response function, with Fourier
- 8 transform called linear susceptibility to be explicitly given below, and $\langle f(t) \rangle_0 = Gr(\overline{\mu}, D)$ is the stationary average
- of the feedback term with the stationary firing rate $r(\bar{\mu}, D)$, which can be found by solving the self-consistent
- 10 relation [20,27,44]

1

$$11 r(\overline{\mu}, D, V_T) = r_0(\overline{\mu} + Gr(\overline{\mu}, D), D, V_T) (A2)$$

with $r_0(\mu, D, V_T) = (\tau_R + \sqrt{\pi} \int_{(\mu - v_R)/\sqrt{2D}}^{(\mu - v_R)/\sqrt{2D}} dz e^{z^2} erfc(z))^{-1}$. Introducing Fourier transform of the zero average spike trains as

13
$$\widetilde{y}_{i}(\omega) = \frac{1}{\sqrt{T}} \int_{0}^{T} dt e^{i\omega t} (y_{i}(t) - r(\overline{\mu}, D)).$$

14 Then, from Eq. (A1), one can get the linear response in the frequency domain as follows:

15
$$\widetilde{y}_{i}(\omega) = \widetilde{y}_{i}^{0}(\omega) + A(\omega, \overline{\mu}, D, V_{T})[\widetilde{s}(\omega) + \frac{G}{N}F(\omega)\sum_{j=1}^{N}\widetilde{y}_{j}(\omega)]$$
 (A3)

- where $\tilde{y}_i^0(\omega) = \mathcal{F}[y_i^0(t)]$ represents a realization of the spiking output of the *i*th neuron in the frequency
- domain, $F(\omega) = e^{i\omega\tau_D}/(1-i\omega\tau_S)^2$ is the Fourier transform of the kernel in Eq. (2), and correspondingly
- 18 $\frac{1}{N}F(\omega)\sum_{i=1}^{N}\widetilde{y}_{j}(\omega)$ stands for the Fourier transform of the zero static mean synaptic feedback $f(t)-\langle f(t)\rangle_{0}$, and
- 19 $A(\omega, \mu, D) = \mathcal{F}[R(\overline{\mu}, D, t)]$ is the linear susceptibility given by [27]

$$A(\omega,\mu,D,V_T) = \frac{r(\mu,D)i\omega}{\sqrt{D}(i\omega-1)} \frac{\widetilde{D}_{i\omega-1}(\frac{\mu-v_T}{\sqrt{D}}) - e^{\gamma}\widetilde{D}_{i\omega-1}(\frac{\mu-v_R}{\sqrt{D}})}{\widetilde{D}_{i\omega}(\frac{\mu-v_T}{\sqrt{D}}) - e^{\gamma}e^{i\omega\tau_R}\widetilde{D}_{i\omega}(\frac{\mu-v_R}{\sqrt{D}})}$$
(A4)

21 with
$$\gamma = [v_R^2 - v_T^2 + 2\mu(v_T - v_R)]/4D$$
. Let

$$Y(\omega) = [\widetilde{y}_1(\omega), \widetilde{y}_2(\omega), ..., \widetilde{y}_N(\omega)]^T \quad Y_0(\omega) = [\widetilde{y}_1^0(\omega), \widetilde{y}_2^0(\omega), ..., \widetilde{y}_N^0(\omega)]^T$$

23 Rewrite Eq. (A3) as

24
$$Y(\omega) = Y_0(\omega) + A(\omega, \overline{\mu}, D, V_T) \widetilde{s}(\omega) \alpha + \frac{1}{N} GA(\omega, \overline{\mu}, D, V_T) F(\omega) \alpha \alpha^T Y(\omega)$$
 (A5)

25 Then, by $\langle Y_0(\omega)\tilde{s}^*(\omega)\alpha\rangle = 0$,

$$\left\langle Y(\omega)Y^{H}(\omega) \right\rangle = \left(I + \frac{1}{N} \frac{GA(\omega, \overline{\mu}, D, V_{T})F(\omega)\alpha\alpha^{T}}{1 - GA(\omega, \overline{\mu}, D, V_{T})F(\omega)} \right) \left(\left\langle Y_{0}(\omega)Y_{0}^{H}(\omega) \right\rangle + \left| A(\omega, \overline{\mu}, D, V_{T}) \right|^{2} \left\langle \tilde{s}(\omega)\tilde{s}^{*}(\omega) \right\rangle \alpha\alpha^{T} \right)$$

$$\times \left(I + \frac{1}{N} \frac{GA^{*}(\omega, \overline{\mu}, D, V_{T})F^{*}(\omega)\alpha\alpha^{T}}{1 - GA^{*}(\omega, \overline{\mu}, D, V_{T})F^{*}(\omega)} \right)$$

- 27 where the superscripts H and * denote transpose conjugate and conjugate, respectively, and $\alpha = [1, 1, ..., 1]^T$ is
- a constant auxiliary vector.
- Note that for a homogeneous network, the population activity $y(t) = \frac{1}{N} \sum y_i(t)$ is of central importance.
- From the definition of spectral density $G_{yy}(\omega) = \frac{1}{N^2} \alpha^T \langle Y(\omega) Y^H(\omega) \rangle \alpha$, one can obtain

$$G_{yy}(\omega) = \left(1 + \frac{GA(\omega, \overline{\mu}, D, V_T)F(\omega)}{1 - GA(\omega, \overline{\mu}, D, V_T)F(\omega)}\right) \left(\frac{1}{N^2} \sum_{i=1}^{N} \sum_{j=1}^{N} \left\langle y_i^0(\omega) y_i^{0*}(\omega) \right\rangle + \left| A(\omega, \overline{\mu}, D, V_T) \right|^2 \left\langle \widetilde{s}(\omega) \widetilde{s}^*(\omega) \right\rangle \right) \left(1 + \frac{GA^*(\omega, \overline{\mu}, D, V_T)F^*(\omega)}{1 - GA^*(\omega, \overline{\mu}, D, V_T)F^*(\omega)}\right)$$

$$= \frac{\left| A(\omega, \overline{\mu}, D, V_T) \right|^2 \left\langle \widetilde{s}(\omega) \widetilde{s}^*(\omega) \right\rangle + \frac{1}{N} S_0((\omega, \overline{\mu}, D, V_T))}{\left| 1 - GA(\omega, \overline{\mu}, D, V_T)F(\omega) \right|^2}. \tag{A6}$$

- 32 Let $S_1(\omega) = \frac{|A|^2}{|1 GAF|^2} \langle \widetilde{s} \widetilde{s}^* \rangle$ be the spectral density of the signal component, and
- 33 $S_2(\omega) = \frac{1}{N|1 GAF|^2} S_0(\omega, \overline{\mu}, D, V_T)$ with

$$S_{0}(\omega,\mu,D,V_{T}) \stackrel{\Delta}{=} \left\langle \widetilde{y}_{i}^{0}(\omega) \widetilde{y}_{i}^{0*}(\omega) \right\rangle = r(\mu,D) \frac{\left| \widetilde{D}_{i\omega} \left(\frac{\mu - v_{T}}{\sqrt{D}} \right) \right|^{2} - e^{2\gamma} \left| \widetilde{D}_{i\omega} \left(\frac{\mu - v_{R}}{\sqrt{D}} \right) \right|^{2}}{\left| \widetilde{D}_{i\omega} \left(\frac{\mu - v_{T}}{\sqrt{D}} \right) - e^{\gamma} e^{i\omega t_{R}} \widetilde{D}_{i\omega} \left(\frac{\mu - v_{R}}{\sqrt{D}} \right) \right|^{2}}$$
(A7)

- representing spectral density of fluctuations, then $G_{yy}(\omega) = S_1(\omega) + S_2(\omega)$. With the spectral density $G_{yy}(\omega)$
- available, the spectral amplification factor and signal-to-noise ratio can be obtained accordingly, as shown in
- 37 Eqs.(6) and (7).