
Supplementary Information: Synaptic Plasticity Dynamics for Deep
Continuous Local Learning (DECOLLE)

Jacques Kaiser,
FZI Research Center For Information Technology

Karlsruhe, Germany

Hesham Mostafa,
Department of Bioengineering

University of California San Diego
La Jolla, USA

Emre Neftci,
Department of Cognitive Sciences
Department of Computer Science

University of California Irvine, Irvine, USA

April 28, 2020

1 Implementation of DECOLLE using Autodifferentiation
The equations of Deep Continuous Local Learning (DECOLLE) are very similar to that of a simple recurrent neural
network. However, rather than performing backpropagation through-time, the derivatives of Ui are computed by
propagating the traces Pi forward in time as follows:

for n = 0...T do
{Advance State}
for l < 1...L do
U l
i =

∑
j W

l
ijP

l
j − ρRl

i

Si = STOPGRAD(Θ(Ui) − σ(Ui)) + σ(Ui)
if Sign-concordant feedback matrix then
Yi = STOPGRAD(

∑
j GijSj −

∑
j HijSj) +

∑
j HijSj

else
Yi =

∑
j GijSj

end if
Ll = floss(Y

l
k , Ŷ

l
k)

W l
ij = W l

ij + ηGRAD(Ll,W l
ij)

P l
i = αP l

i + (1 − αi)Q
l
i

Ql
i = βQl

i + (1 − βi)STOPGRAD(Sl−1
i )

Rl
i = γRl

i + (1 − γi)STOPGRAD(Sl−1
i )

end for
end for

where floss is the loss function, e.g. MSE loss. STOPGRAD prevents the flow of gradients by setting them to zero.
STOPGRAD(A-B)+B as above is a common construct used to compute gradients using a separate subgraph. In this

1



case, it is used to implement the surrogate gradient. Note that the time variable does not appear in the variables. This
underlines that DECOLLE computation does not need to store the state histories, and that the variables necessary for
computing the gradient (GRAD) are available within the same step. In our implementation, the weights are updated
online, at every time step. The cost of making the parameter update is no more than accumulating the gradients at
each time step, since parameter memory and dynamical state memory are the same. Therefore, there is no overhead in
updating online. Note that this may not be the case in dedicated neuromorphic hardware or AI accelerators that require
different memory structures for storing parameter memory.

2 Complexity Overhead for Various Spiking Neuron Gradient-Based Train-
ing Approaches

We provide additional detail on the complexity of DECOLLE compared to other learning methods. In the current
implementation of DECOLLE, all weight updates are applied immediately, thus no additional memory is necessary to
accumulate the gradients. In all other methods presented in (Tab. 1), the weight updates are applied in an epoch-wise
fashion, which requires an additional variable to store the accumulated weights. However, this is an implementation
choice which could have been made for methods other than DECOLLE as well. For this reason, the overhead of
accumulating gradients in epoch-wise learning is ignored in the following calculations.

DECOLLE The state of P and Q must be maintained. These states are readily available from the forward pass, and
therefore do not need to be stored specifically for learning. Space complexity is therefore O(1). Each weight update
requires MNr multiplications to obtain M local errors. Each of these are multiplied by the number of inputs pN ,
resulting in O(pNM + MNr) time complexity, where p is the faction of connected neurons. Similarly to [2], the
random weights in Gl can be computed using a random number generator, which requires one seed value per layer.

Superspike When using the Van Rossum Distance (VRD), the Superspike learning rule requires one trace per
connection, resulting in a space complexity of O(pNM). The additional complexity here compared to DECOLLE is
caused by the additional filter in the Van Rossum distance. Note that if the learning is applied directly to membrane
potentials, the space and time complexity is similar to that of DECOLLE.

eProp In the case when no future errors are used, the complexity of e-Prop [1] is similar to that of SuperSpike.

RTRL and BPTT The complexity of these techniques are discussed in detail in [3].

Method Space Time
DECOLLE O(1) O(MNr + pNM)
SuperSpike (VRD) O(pNM) O(pNM)
e-Prop 1 O(pNM) O(pNM)
RTRL O(pNM2) O(p2N2M2)
BPTT O(NT ) O(pNMT )

Table 1: Complexity analysis of the gradient computation. N : Input neurons, M : Neurons in Layer, T : Length of
Backpropagated Sequence, Nr: number of readout neurons in DECOLLE, p: ratio of connected neurons/total possible
connections.

3 C3D Network
We used a standard 3D convolution network (C3D) for comparison with DECOLLE. In C3D, the temporal dimension
is taken into account in the third dimension of the 3D convolution.

2



Layer Type # Data Type Dimensions
DVS 2 AEDAT 3.1 128 × 128
Downsample (Sum) and Frame 2 Binary 16 × 32 × 32
3 × 3 Conv ReLU 32 Binary 16 × 32 × 32
1 × 2 × 2 MaxPool 32 Binary 16 × 16 × 16
3 × 3 Conv ReLU 64 Binary 16 × 16 × 16
2 × 2 × 2 MaxPool 64 Binary 8 × 8 × 8
3 × 3 Conv ReLU 128 Binary 8 × 8 × 8
3 × 3 Conv ReLU 128 Binary 8 × 8 × 8
2 × 2 × 2 MaxPool 128 Binary 4 × 4 × 4
3 × 3 Conv ReLU 256 Binary 4 × 4 × 4
3 × 3 Conv ReLU 256 Binary 4 × 4 × 4
2 × 2 × 2 MaxPool 256 Binary 2 × 2 × 2
3 × 3 Conv ReLU 256 Binary 2 × 2 × 2
3 × 3 Conv ReLU 256 Binary 2 × 2 × 2
2 × 2 × 2 MaxPool 256 Binary 1 × 2 × 2
Dense ReLU 1024 Float 1024
Dense ReLU 512 Float 512
Dense Softmax 11 Float 11

References
[1] Guillaume Bellec, Franz Scherr, Elias Hajek, Darjan Salaj, Robert Legenstein, and Wolfgang Maass. Biologi-

cally inspired alternatives to backpropagation through time for learning in recurrent neural nets. arXiv preprint
arXiv:1901.09049, 2019.

[2] Hesham Mostafa, Vishwajith Ramesh, and Gert Cauwenberghs. Deep supervised learning using local errors. arXiv
preprint arXiv:1711.06756, 2017.

[3] Ronald J Williams and David Zipser. Gradient-based learning algorithms for recurrent networks and their computa-
tional complexity. Backpropagation: Theory, architectures, and applications, 433, 1995.

3


	Implementation of DECOLLE using Autodifferentiation
	Complexity Overhead for Various Spiking Neuron Gradient-Based Training Approaches
	C3D Network

