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Information here are presented in the order in which they are mentioned in the manuscript.

1 ADDITIONAL INFORMATION ON LABORATORY TESTS TO CALIBRATE THE
DEM MODELS

Numerical calculations were based on laboratory experiments on concrete performed by (Van Vliet
and Van Mier, 1999). Concrete with the following properties was used (see Tab.1): water-cement ratio
w/c = 0.5, Portland cement type B 375kg, aggregates 2-8 mm in diameter - 903 kg and sand 0.125-2 mm
in diameter - 905 kg). The average compressive strength of cubes was 50 MPa. The size and the shape of
the specimen (dog-bone shape) were shown in Fig. (Van Vliet and Van Mier, 1999) (specimen “B”: height -
150 mm, width - 100 mm and depth - 100 mm). The experimental force - deformation curve was shown in
Fig.3 of (Van Vliet and Van Mier, 1999). The experimental nominal tensile strength was ft = 2.97 MPa.
The shape of the crack in the numerical calculation was similar to that in the experiment (Van Vliet and
Van Mier, 1999).

The thickness of the concrete specimen in experiments was 100 mm. The physical model was three-
dimensional. To shorten a computer effort related to a huge number of particles in 3D conditions, the
numerical concrete specimen was 2D one, i.e. it solely included one layer of particles. The particles of
different sizes were made of aggregate and mortar. There were 200 aggregate spherical grains (diameter
range 2 - 16 mm) and 8,000 mortar spherical grains (diameter range 0.25 - 2 mm).

2 CONTACT LAWS FOR THE DEM MODELS

DI and DII were derived from a family of discrete element (DEM) models of fracture in concrete, previously
reported in (Nitka and Tejchman, 2015; Skarżyński et al., 2015; Suchorzewski et al., 2018a,b): readers
are referred to these papers for full details including model calibration on laboratory tests on real concrete
specimens. Here, we elaborate below on the contact models used since the contacts and their capacities
form an input to the network flow analysis. The DEM model takes advantage of the so-called soft-particle
approach (i.e. the model allows for grain deformation that is modelled as an overlap of grains) (Fig.1,
Eqns. 1-6 in (Nitka and Tejchman, 2015)). The interaction force vector representing the action between two
spherical discrete elements in contact was decomposed into a normal and tangential vector, respectively
(Fig. 1(A) and 1(B) in (Nitka and Tejchman, 2015)). A linear normal contact model under compression
was used (Fig. 1(B) in (Nitka and Tejchman, 2015)). The normal forces acting on spheres were modelled
by an elastic law with cohesion. The normal and tangential forces were linked to the displacements through
the normal stiffness and the tangential stiffness. These stiffness values were computed as functions of: the
modulus of elasticity of the grain contact and the radii of the grains in contact for the normal stiffness, and
the modulus of elasticity, Poisson’s ratio of the grain contact, and the radii of the grains in contact for the
tangential stiffness (Eqn. 3 in (Nitka and Tejchman, 2015)). The unloading was purely elastic (Fig.1(C)
in (Nitka and Tejchman, 2015)).

The tangential and normal forces at a contact were coupled together by the cohesive-frictional Mohr-
Coulomb equation (Fig. 1(D), Eqn. 4 in (Nitka and Tejchman, 2015)). The cohesive force and tensile force
were assumed as a function of the cohesive stress (maximum shear stress at pressure equal to zero), tensile
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normal stress and sphere radius (Eqn. 5 in (Nitka and Tejchman, 2015)). Of relevance to this analysis is the
normal force during tension: in this case, the normal force may be negative down to the minimum value
Fn
min = T (r2min) where T is the minimum tensile normal stress and rmin is the radius of the smaller grain

for the pair of grains in contact. If this minimum normal force was reached, the contact was broken.

For DI, the contact properties were as follows. For all grain-grain contacts, the modulus of elasticity
Ec = 15 GPa, Poisson’s ratio νc = 0.2, cohesion C = 140 MPa and minimum tensile stress T = 25 MPa.
The grain-grain friction angle was µ = 30◦, the mass density ρ = 2500 kg/m3 and the damping parameter
αd = 0.08.

For DII, the contact properties were as follows. For the cement-cement contacts, we assume: modulus of
elasticity Ec = 11.2 GPa, Poisson’s ratio νc = 0.2, cohesion C = 140 MPa and minimum tensile stress
T = 24.5 MPa. For the cement-aggregate(ITZ) contacts, we assume: modulus of elasticity Ec = 7.8
GPa, Poisson’s ratio νc = 0.2, cohesion C = 100 MPa and minimum tensile stress T = 17.5 MPa. The
grain-grain friction angle was µ = 18◦, the mass density ρ = 2500 kg/m3 and the damping parameter
αd = 0.08.
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3 METHOD FOR IDENTIFICATION OF TENSILE FORCE CHAINS

Tensile force chains carry the majority of the tensile load in the sample. Following the method used to
identify compressive force chains in (Muthuswamy and Tordesillas, 2006), identifying tensile force chains
from data on contact forces proceeds in two steps.

• Step 1 of 2: Find the particle load vector and type of each particle.
The particle load vector P, is derived from the local force moment tensor associated with each

particle, defined as

σ̂ij =
N∑
c=1

fi
crj

c, (S1)

where N is the number of contacting neighbors of the particle (or grain), fic denotes the components
of the contact force, and rjc denotes the components of the unit normal vector from the center of
the particle to the point of contact (Peters et al., 2005). The magnitude and direction of the particle
load vector P is given by the largest eigenvalue of σ̂ij and its corresponding eigenvector. If the tensile
(compressive) forces acting on the particle are dominant, the sign of the largest eigenvalue will be
positive (negative) and we classify the particle as Te (Co). We group all Te grains in one class and call
it the Te-class.

• Step 2 of 2: Identify tensile force chains in the Te-class.
A tensile force chain is defined as a chain of three or more Te particles in contact, whose particle

load vector magnitudes each exceed the global average value in the Te-class and whose particle load
vectors are in alignment with each other to within a prescribed tolerance angle θ, that is

cos θ <
P · lc
|P| |lc|

≤ 1, (S2)

where lc is the branch vector from the center of the focal particle to its neighbor in the tensile force
chain. Further details concerning this algorithm can be found in (Muthuswamy and Tordesillas, 2006).
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3.1 Spatial evolution of force chains in DI and DII

Figure S1. DI: Force transmission is governed by tensile force chains. The spatial distribution of tensile
force chains is visualized here by the contact links (lines connecting the centroids of grains in the chain):
link thickness is proportional to the magnitude of the tensile force transmitted at the contact. A percolating
tensile force chain network is first established at stage 2.
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Figure S2. DI: A negligible number of compressive force chains form in the pre-failure regime. The
spatial distribution of compressive force chains is visualized here by the contact links (lines connecting the
centroids of grains in the chain): link thickness is proportional to the magnitude of the compressive force
transmitted at the contact using the same scale as that used to visualize the tensile force chains in Figure S1
to allow direct comparison.
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Figure S3. DII: Force transmission is governed by tensile force chains. The spatial distribution of tensile
force chains at key stages is visualized here by the contact links (lines connecting the centroids of grains in
the chain): link thickness is proportional to the magnitude of the tensile force transmitted at the contact. A
percolating tensile force chain network is first established at stage 1.
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Figure S4. DII: A negligible number of compressive force chains form in the pre-failure regime. The
spatial distribution of compressive force chains at key stages is visualized here by the contact links (lines
connecting the centroids of grains in the chain): link thickness is proportional to the magnitude of the
compressive force transmitted at the contact using the same scale as that used to visualize the tensile force
chains in Figure S3 to allow direct comparison.
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4 FORCE FLOW CAPACITY INDEX

Figure S5. (Color online) Force flow capacity index η = (F ∗ − F )/F ∗
1 → 0, as indicator of failure. (A)

DI and (B) DII. Note that there are still bonded contacts that remain in the final time state, hence neither
sample has completely split up into two pieces. Additional time steps in the failure regime are included to
show limit behavior.
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5 MOST TENSILE FORCE CHAIN LINKS ARE IN P

Figure S6. (Color online) Most tensile force chain links (TT) are in P in the pre-failure regime. Percentage
population of TT links in versus out of P , averaged over (A) the pre-failure (stages 2− 9) and post-failure
(stages 10− 11) regimes for DI and (B) the pre-failure (stages 1− 45) and post-failure (stages 46− 47)
regimes for DII.
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6 SPATIAL DISTRIBUTION OF FORCE BOTTLENECKS IN DI AND DII

Figure S7. (Color online) Force bottlenecks B provide an early prediction of the ultimate crack pattern
. Spatial distribution of the bottlenecks B for (A) DI and (B) DII. Grains on either side of the ultimate
macrocrack are artificially separated to aid visual comparison of the bottleneck versus the actual macrocrack
location. Prediction persists for all stages except stage 8 (stages 32, 33) for DI and DII respectively, where
it predicts the secondary or competing bottleneck. Stage corresponds to the peak force in between stages 9
and 10 (45 and 46) for DI and DII respectively. Note also that for DII we have only included predictions
for selected stages. Other stages have similar predictions.
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7 QUANTIFYING THE ERROR OF PREDICTION OF MACROCRACK LOCATION

Here we quantify the error between the predicted location and the actual location of the macrocrack. The
percentage error of prediction of macrocrack location is given by

Pe =
|(VBu \ VCu) ∪ (VCu \ VBu)|

|VT |
× 100, (S3)

where VBu , VCu are the grains in the upper part of bottleneck and upper part of macrocrack respectively,
VT is all the grains in the sample, and | | denotes the cardinality (size = number of grains). This quantifies
the number of offset grains (i.e., red colour grains below and blue colour grains above the separation as
shown in Figure S7) in the prediction relative to macrocrak normalized to the total number of grains. If the
grains are in the upper part of the prediction and upper part of the macrocrack is identical, the percentage
error is 0. In other words, if the red-blue interface of Figure S7 is same as the artificial separation (i.e., no
red colour grains below and no blue colour grains above the separation), then the percentage error is 0.
Otherwise, we have non zero error. As can be seen from Figure S8, the error of prediction of macrocrack
location by B∗ is less than 1%, except when the secondary bottleneck appears in stage 8 for D1 and stages
32-33 for DII.

Figure S8. (Color online) The error of prediction of macrocrack location by B∗ is less than 1%, except
when the secondary bottleneck appears in stage 8 for D1 and stages 32-33 for DII. Evolution of the
percentage error of prediction of macrocrack location given by Equation S3 for (A) DI and (B) DII.
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