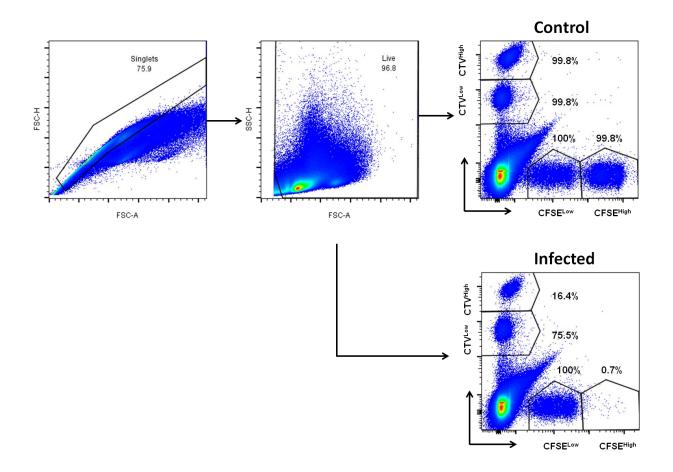
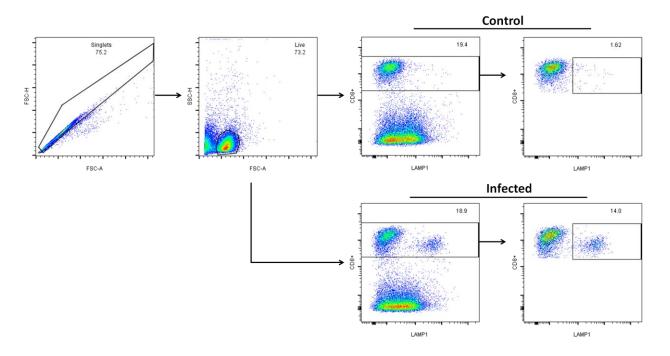
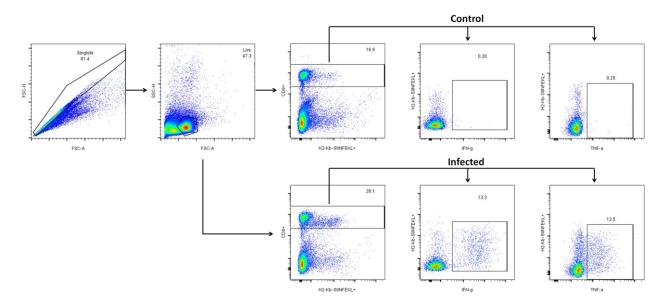


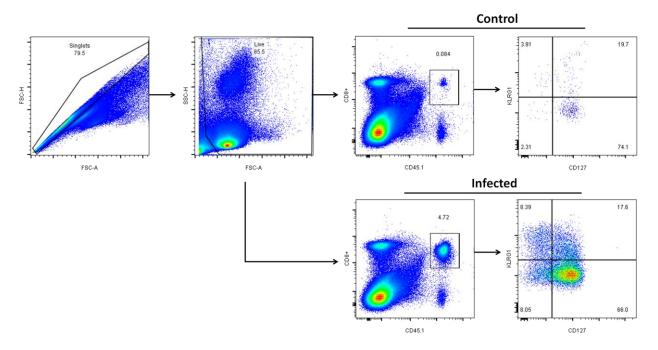
Supplementary Material

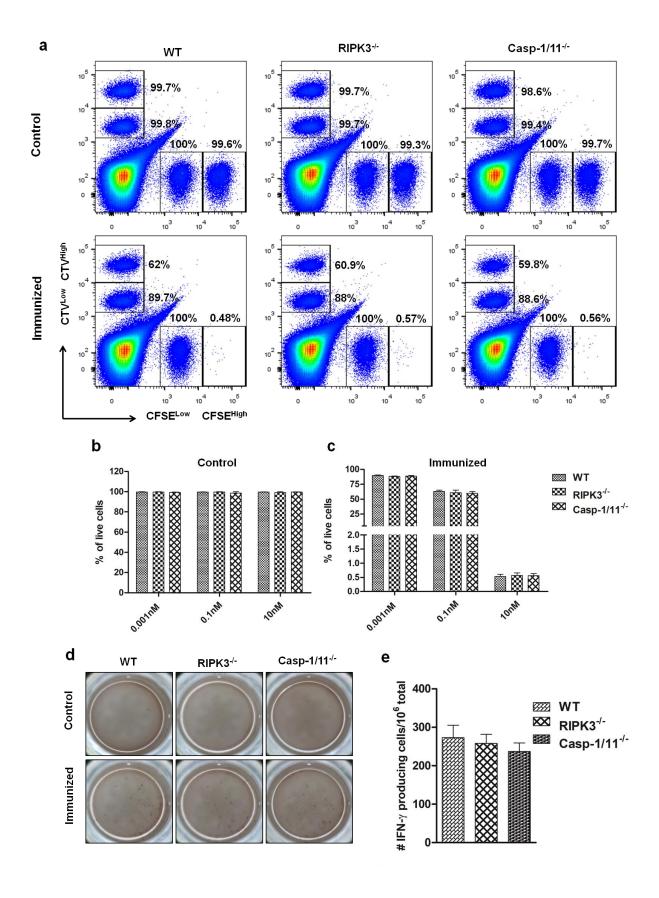


Supplementary figure 1: Gate strategy to evaluate CD8⁺ H2-K^b-SIINFEKL⁺ population.


FSC-A x FSC-H (Forward Scattered-Area x Forward Scattered-Height) to exclude doublets, then FSC-A x SSC-H (Forward Scattered-Area x Side Scattered-Height) to exclude debris and finally H2-K^b–SIINFEKL⁺ x CD8⁺ to separate CD8⁺ H2-K^b–SIINFEKL⁺ population.


Supplementary figure 2: Gate strategy to evaluate *in vivo* **proliferation of OT-I cells.** FSC-A x FSC-H to exclude doublets, FSC-A x SSC-A (Forward Scattered-Area x Side Scattered-Area) to exclude debris, FSC-A x CD8⁺ to separate CD8⁺ T cell population, FSC-H x CTV to separate adoptively transferred OT-I CD8⁺ cell population and finally CTV x Count to observe proliferation/division of OT-I CD8+ T cell population.


Supplementary figure 3: Gate strategy to evaluate in vivo target cell killing by CTLs. FSC-A x FSC-H to exclude doublets, FSC-A x SSC-H to exclude debris and finally CFSE^{High}, CFSE^{Low}, CTV^{High} and CTV^{Low} populations showing percentage of target cell killing by CTLs.


Supplementary figure 4: Gate strategy for CD8⁺ **LAMP1**⁺ **population.** FSC-A x FSC-H to exclude doublets, then FSC-A x SSC-H to exclude debris and finally LAMP1 x CD8⁺ to separate CD8⁺ LAMP1⁺ population.

Supplementary figure 5: Gate strategy for IFN- γ and TNF- α expressing CD8⁺ H2-K^b–SIINFEKL⁺ population. FSC-A x FSC-H to exclude doublets, then FSC-A x SSC-H to exclude debris, H2-K^b–SIINFEKL⁺ x CD8⁺ to separate H2-K^b–SIINFEKL⁺ x CD8⁺ population, IFN- γ x H2-K^b–SIINFEKL⁺ to separate IFN- γ ⁺ population and TNF- α x H2-K^b–SIINFEKL⁺ to separate TNF- α ⁺ population.

Supplementary figure 6: Gate strategy to evaluate KLRG1⁺ **CD127**⁺ **OT-I CD8**⁺ (**CD45.1 CD45.2**⁺) **population.** FSC-A x FSC-H to exclude doublets, then FSC-A x SSC-H to exclude debris, CD45.1 x CD8⁺ to separate CD45.1 ⁺ CD45.2 adoptively transferred CD8 OT-1 cells and finally CD127 x KLRG1 to observe the frequency of KLRG1 and CD127 adoptively transferred CD8+ OT-1 cells.

Supplementary figure 7: Antigen-specific CD8⁺ **T cell response depends on antigen-delivery vector.** (a-c) *In vivo* elimination of target cells pulsed with high (10nM), intermediate (0.1nM) and low (0.001nM) concentration of OVA₂₅₇₋₂₆₄ peptide at day 7 post-immunization with rhAd5-OVA. (a) Percentage of CFSE^{High}, CFSE^{Low}, CTV^{High} and CTV^{Low} shows the frequency of remaining cells after CTL-mediated target cell elimination. Percentage of live target cells in (b) non-immunized and (c) immunized mice. (d, e) Frequency of IFN-γ producing cells: Splenocytes from WT, RIPK3^{-/-} and Casp-1/11^{-/-} immunized or non-immunized mice pulsed with 10mM of OVA₂₅₇₋₂₆₄ peptide. Spots represent the frequency of OVA specific IFN-γ producing CD8⁺ T cells. The data is expressed as means of five individual mice per group and is representative of three independent experiments with similar results.