Supplementary Material

Competition between phenothiazines and BH3 peptide for the binding site of the antiapoptotic BCL-2 protein

Aline Lagoeiro do Carmo^a, Fernanda Bettanin^b, Michell de Oliveira Almeida^c, Simone Queiroz Pantaleão^a, Tiago Rodrigues^a, Paula Homem-de-Mello^{a,*}, Kathia Maria Honorio^{a,b,*}

^a Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Santo André, São Paulo, Brazil.

^b Escola de Artes, Ciências e Humanidades, Universidade de São Paulo (USP), São Paulo, Brazil.

^c Instituto de Química de São Carlos, Universidade de São Paulo (USP), São Carlos, São Paulo, Brazil.

*Corresponding author emails: paula.mello@ufabc.edu.br, kmhonorio@usp.br

Figure S1. Structures of the compounds which are intended to mimic the BH3 domain that bind to the BH3 binding domain on BCL-2 antiapoptotic members: (a) ABT-737, (b) navitoclax (ABT-263), (c) obatoclax mesylate (GX15-070), (d) venetoclax (ABT-199) and (e) gossypol.

Figure S2. Alignment of human Bcl-2 protein A chain crystallographic structures (PDB_ID: 1YSW, 202F, 2021, 2022, 2W3L, 4AQ3, 4IEH, 4LVT, 4LXD, 4MAN, 5AGW, 5AGX, 5JSN): (a) left side view; (b) right side view, (c) front view and (d) rear view.

	1	2	3	4	5	6	7	8	9	10	11	12	13
	(1YSW)	(202F)	(2021)	(2022)	(2W3L)	(4AQ3)	(4IEH)	(4LVT)	(4LXD)	(4MAN)	(5AGW)	(5AGX)	(5JSN)
1		1.6	0.0	0.5	1.3	1.3	1.3	1.2	1.3	1.3	1.4	1.4	1.2
2	1.6		1.6	1.6	1.6	1.5	1.4	1.4	1.4	1.4	1.6	1.6	1.7
3	0.0	1.6		0.5	1.3	1.3	1.3	1.2	1.3	1.3	1.4	1.4	1.2
4	0.5	1.6	0.5		1.4	1.3	1.3	1.2	1.3	1.3	1.4	1.5	1.3
5	1.3	1.6	1.3	1.4		0.7	1.0	0.7	0.9	0.9	0.8	0.8	0.7
6	1.3	1.5	1.3	1.3	0.7		0.8	0.9	0.7	0.8	0.8	0.9	0.8
7	1.3	1.4	1.3	1.3	1.0	0.8		0.9	0.5	0.5	0.8	0.9	1.0
8	1.2	1.4	1.2	1.2	0.7	0.9	0.9		0.8	0.8	0.9	1.1	0.9
91	1.3	1.4	1.3	1.3	0.9	0.7	0.5	0.8		0.5	0.8	0.9	0.9
10	1.3	1.4	1.3	1.3	0.9	0.8	0.5	0.8	0.5		0.9	0.9	1.0
11	1.4	1.6	1.4	1.4	0.8	0.8	0.8	0.9	0.8	0.9		0.6	0.7
12	1.4	1.6	1.4	1.5	0.8	0.9	0.9	1.1	0.9	0.9	0.6		0.9
13	1.2	1.7	1.2	1.3	0.7	0.8	1.0	0.9	0.9	1.0	0.7	0.9	

Figure S3. RMSD matrix of the alignment of the human Bcl-2 protein A chain crystallographic structures (PDB_ID: 1YSW, 2O2F, 2O21, 2O22, 2W3L, 4AQ3, 4IEH, 4LVT, 4LXD, 4MAN, 5AGW, 5AGX, 5JSN).

1ysw.pdb	1	-HAGRTGYDNREIVMKYIHYKLSQRGYEWDAGDDVEENRTEAPEGTESEVVHLTL	54
2o2f.pdb	1	GYDNREIVMKYIHYKLSQRGYEWDE-VVHLTL	31
2021.pdb	1	-HAGRTGYDNREIVMKYIHYKLSQRGYEWDAGDDVEENRTEAPEGTESEVVHLTL	54
2022.pdb	1	-HAGRTGYDNREIVMKYIHYKLSQRGYEWDAGDDVEENRTEAPEGTESEVVHLTL	54
2w3l.pdb	1	YDNREIVMKYIHYKLSQRGYEWDASEVVHKTL	32
4aq3.pdb	1	YDNREIVMKYIHYKLSQRGYEWDVVHLAL	29
4ieh.pdb	1	YDNREIVMKYIHYKLSQRGYEWDSEVVHLTL	31
4lvt.pdb	1	YDNREIVMKYIHYKLSQRGYEWDASEVVHLTL	32
41xd.pdb	1	RTGYDNREIVMKYIHYKLSQRGYEWDAGSEVVHLTL	36
4man.pdb	1	GYDNREIVMKYIHYKLSQRGYEEVVHLTL	29
5agw.pdb	1	GYDNREIVMKYIHYKLSQRGYEWDSEVVHLTL	32
5agx.pdb	1	GYDNREIVMKYIHYKLSQRGYEWDASEVVHLTL	33
5jsn.pdb	1	TGYDNREIVMKYIHYKLSQRGYEWDASPVPPVVHLTL	37
		YDNREIVMKYIHYKLSQRGYE VVHltL	
1ysw.pdb	55	RQAGDDFSRRYRRDFAEMSSQLHLTPFTARGRFATVVEELFRDGVNWGRIVAFFEF	110
2o2f.pdb	32	RQAGDDFSRRYRRDFAEMSSQLHLTPFTARGRFATVVEELFRDGVNWGRIVAFFEF	87
2021.pdb	55	RQAGDDFSRRYRRDFAEMSSQLHLTPFTARGRFATVVEELFRDGVNWGRIVAFFEF	110
2022.pdb	55	RQAGDDFSRRYRRDFAEMSSQLHLTPFTARGRFATVVEELFRDGVNWGRIVAFFEF	110
2w3l.pdb	33	REAGDDFSRRYRRDFAEMSSGLHLTPFTARGRFATVVEELFRDGVNWGRIVAFFEF	88
4aq3.pdb	30	RQAGDDFSRRYRGDFAEMSSQLHLTPFTARGRFATVVEELFRDGVNWGRIVAFFEF	85
4ieh.pdb	32	RQAGDDFSRRYRRDFAEMSSQLHLTPFTARGRFATVVEELFRDGVNWGRIVAFFEF	87
4lvt.pdb	33	RQAGDDFSRRYRRDFAEMSSQLHLTPFTARGRFATVVEELFRDGVNWGRIVAFFEF	88
41xd.pdb	37	RQAGDDFSRRYRRDFAEMSSQLHLTPFTARGRFATVVEELFRDGVNWGRIVAFFEF	92
4man.pdb	30	RQAGDDFSRRYRRDFAEMSSQLHLTPFTARGRFATVVEELFRDGVNWGRIVAFFEF	85
5agw.pdb	33	RQAGDDFSRRYRRDFAEMSSQLHLTPFTARGRFATVVEELFRDGVNWGRIVAFFEF	88
5agx.pdb	34	RQAGDDFSRRYRRDFAEMSSQLHLTPFTARGRFATVVEELFRDGVNWGRIVAFFEF	89
5jsn.pdb	38	RQAGDDFSRRYRRDFAEMSSQLHLTPFTARGRFATVVEELFRDGVNWGRIVAFFEF	93
		RqAGDDFSRRYRrDFAEMSSqLH TARGRFATVVEELFRDGVNWGRIVAFFEF	
1ysw.pdb	111	GGVMCVESVNREMSPLVDNIALWMTEYLNRHLHTWIQDNGGWDAFVELYGPSMR 164	Ļ
2o2f.pdb	88	GGVMCVESVNREMSPLVDNIALWMTEYLNRHLHTWIQDNGGWDAFVELYGP 138	£
2021.pdb	111	GGVMCVESVNREMSPLVDNIALWMTEYLNRHLHTWIQDNGGWDAFVELYGPSMR 164	ļ.
2022.pdb	111	GGVMCVESVNREMSPLVDNIALWMTEYLNRHLHTWIQDNGGWDAFVELYGPSMR 164	ŧ.
2w3l.pdb	89	GGVMCVESVNREMSPLVDNIALWMTEYLNRHLHTWIQDNGGWDAFVELYGPSM 141	
4aq3.pdb	86	GGVMCVESVNREMSPLVDNIALWMTEYLNRHLHTWIQDNGGWDAFVELYG 135	í.
4ieh.pdb	88	GGVMCVESVNREMSPLVDNIALWMTEYLNRHLHTWIQDNGGWDAFVELYGP 138	1
4lvt.pdb	89	GGVMCVESVNREMSPLVDNIALWMTEYLNRHLHTWIQDNGGWDAFVELYGP 139)
41xd.pdb	93	GGVMCVESVNREMSPLVDNIALWMTEYLNRHLHTWIQDNGGWDAFVELYGP 143	1
4man.pdb	86	GGVMCVESVNREMSPLVDNIALWMTEYLNRHLHTWIQDNGGWDAFVELYGP 136	í
5agw.pdb	89	GGVMCVESVNREMSPLVDNIALWMTEYLNRHLHTWIQDNGGWDAFVELYGP 139	1
5agx.pdb	90	GGVMCVESVNREMSPLVDNIALWMTEYLNRHLHTWIQDNGGWDAFVELYGP 140)
5jsn.pdb	94	GGVMCVESVNREMSPLVDNIALWMTEYLNRHLHTWIQDNGGWDAFVELYGPSMRLE 149)
		GGVMCVESVNREMSPLVDNIALWMTEYLNRHLHTWIQDNGGWDAFVELYG	

Figure S4. Alignment of A-chain crystallographic structures of human Bcl-2 protein (PDB_ID: 1YSW, 2O2F, 2O21, 2O22, 2W3L, 4AQ3, 4IEH, 4LVT, 4LXD, 4MAN, 5AGW, 5AGX, 5JSN), representing hydrophobic residues including aromatics (red), acids (blue), basic (pink) and basic with hydroxyl groups and / or amino groups (green); with the marking line below each stretch of the multiple alignment indicating fully conserved residues (upper case) and partially conserved residues (lower case).

Probe	Properties ^a		
Acetamide (ACD)	Polar, hydrogen bond acceptor and donor		
Acetonitrile (ACN)	Polar and hydrogen bond acceptor character		
Acetone (ACT)	Polar and hydrogen bond acceptor character		
Acetaldehyde (ADY)	Polar and hydrogen bond acceptor character		
Methylamine (AMN)	Polar, hydrogen bond acceptor and donor		
Benzaldehyde (BDY)	Polar, aromatic and hydrogen bond acceptor character		
Benzene (BEN)	Hydrophobic and aromatic		
Butanol (BUT)	Polar and hydrogen bond acceptor character		
Ciclohexane (CHX)	Polar, hydrogen bond acceptor and donor		
N,N-dimethylformamide	Polar and hydrogen bond acceptor character		
(DFO)			
Dimethyl ether (DME)	Polar and hydrogen bond acceptor character		
Ethanol (EOL)	Polar, hydrogen bond acceptor and donor		
Ethane (ETH)	Hydrophobic		
Phenol (PHN)	Polar, aromatic, hydrogen bond acceptor and donor		
Isopropanol (THS)	Polar and hydrogen bond acceptor character		
Urea (URE)	Polar, hydrogen bond acceptor and donor		

Table S1. Characteristics of probes used by FTSite and FTMap servers

(a) (Bohnuud et al. 2012; Brenke et al. 2009; D. Kozakov et al. 2011; Dima Kozakov et al. 2015; Ngan et al. 2012)

Residues	Kyte-Doolittle Values ^a	Classifications	Color Scale ^c	
		b		
Ile	4.5	Hydrophobic	Orange-red	
Val	4.2	Hydrophobic	Orange-red	
Leu	3.8	Hydrophobic	Orange-red	
Phe	2.8	Hydrophobic	Orange-red	
Cys	2.5	Hydrophobic	Orange-red	
Met	1.9	Hydrophobic	Orange-red	
Ala	1.8	Hydrophobic	Orange-red	
Gly	-0.4	Neutral	White	
Thr	-0.7	Neutral	White	
Ser	-0.8	Neutral	White	
Trp	-0.9	Neutral	White	
Tyr	-1.3	Neutral	White	
Pro	-1.6	Neutral	White	
His	-3.2	Hydrophilic	Blue	
Glu	-3.5	Hydrophilic	Blue	
Gln	-3.5	Hydrophilic	Blue	
Asp	-3.5	Hydrophilic	Blue	
Asn	-3.5	Hydrophilic	Blue	
Lys	-3.9	Hydrophilic	Blue	
Arg	-4.5	Hydrophilic	Blue	

Table S2. Hydrophobicity and hydrophilicity values by Kyte and Doolittle

(a) Kyte and Doolittle, 1982.

(b) De Oliveira Rodrigues et al., 2015.

(c) Pettersen et al., 2004.

Figure S5. Representation of the molecular coupling of the ligand at the original position of the protein-ligand complex crystal structure (light pink) (PDB_ID: 2O22) and ligand overlap (Blue).

Figure S6. Interactions Predicted by the Poseview Server. (a) crystallographic ligand pose (PDB_ID: 2O22) and (b) ligand pose obtained from re-coupling.

Figure S7. (a) Representation of BH1-BH4 domains (Figure 2) with presence of site 2 detected by FTSite server with aliphatic chlorpromazine subclass molecular coupling, (EC50 = $(125.3 \pm 1.1) \mu \text{mol.L}^{-1}$) performed on the AutoDock Vina 1.5.7 program. Representation of the π -stacking (green), hydrogen bonding (red) and saline bridge (Blue) interaction of the molecular couplings performed in AutoDock Vina 1.5.7 (b) and Achilles Blind Docking (c) server, with additional interactions and / or confirmed by the BINANA 1.2.0 algorithm.

Figure S8. (a) Representation of BH1-BH4 domains (Figure 2) with the presence of site 2 detected by the FTSite server with the aliphatic subclass triflupromazine molecular coupling (EC50 = $(105.9 \pm 1.0) \mu \text{mol.L}^{-1}$) performed in the AutoDock Vina 1.5.7 program. Representation of π -stacking (green), cation- π (yellow) and hydrogen bonding (red) interactions of the molecular couplings performed in AutoDock Vina 1.5.7 (b) and Achilles Blind Docking (c) server, with interactions additional and / or confirmed by the BINANA 1.2.0 algorithm.

(a)

Figure S9. (a) Representation of BH1-BH4 domains (Figure 2) with presence of site 2 detected by FTSite server with piperazine subclass molecular coupling of fluphenazine (EC50 = $(63.2 \pm$ 1.0) μ mol.L⁻¹) performed in the AutoDock Vina 1.5.7 program. Representation of π -stacking (green), cation- π (yellow) and hydrogen bonding (red) interactions of the molecular couplings performed in AutoDock Vina 1.5.7 (b) and Achilles Blind Docking (c) server, with interactions additional and / or confirmed by the BINANA 1.2.0 algorithm.

Figure S10. (a) Representation of BH1-BH4 domains (Figure 2) with the presence of site 2 detected by the FTSite server with the piperazine subclass trifluoperazine molecular coupling $(EC50 = (56.2 \pm 1.0) \mu mol.L^{-1})$ performed in the AutoDock Vina 1.5.7 program. Representation of the π -stacking (green), hydrogen bonding (red) and saline bridge (Blue) interaction of the molecular couplings performed in AutoDock Vina 1.5.7 (b) and Achilles Blind Docking (c) server, with additional interactions and / or confirmed by the BINANA 1.2.0 algorithm.

Figure S11. Representation of the molecular coupling of peptide BH3 in the original position of the crystalline structure (blue) (PDB_ID: 2XA0) in relation to the composition used by the coupling (orange) with the GalaxyPepDock server (RMSD 1.962 Å between the alpha helix amino acid residues).

Figure S12. RMSD values of BCL-2 in Apo form (black), BCL-2 with trifluoperazine molecule (red) and 3D conformation obtained by clustering the MD.

Figure S13. RMSD values of BCL-2 in Apo form (black), BCL-2 with fluphenazine molecule (red) and 3D conformation obtained by clustering the MD.

Figure S14. RMSD values of BCL-2 in Apo form (black), BCL-2 with trifluopromazine molecule (red) and 3D conformation obtained by clustering the MD.

Figure S15. RMSD values of BCL-2 in Apo form (black), BCL-2 with chlorpromazine molecule (red) and 3D conformation obtained by clustering the MD.

Figure S16. RMSF values of BCL-2 in the presence of trifluoperazine.

Figure S17. RMSF values of BCL-2 in the presence of fluphenazine.

Figure S18. RMSF values of BCL-2 in the presence of triflupromazine.

Figure S19. RMSF values of BCL-2 in the presence of chlorpromazine.

REFERENCES

- Bohnuud, Tanggis et al. 2012. "Computational Mapping Reveals Dramatic Effect of Hoogsteen Breathing on Duplex DNA Reactivity with Formaldehyde." *Nucleic Acids Research* 40(16): 7644–52. https://academic.oup.com/nar/article/40/16/7644/1032290.
- Brenke, Ryan et al. 2009. "Fragment-Based Identification of Druggable 'Hot Spots' of Proteins Using Fourier Domain Correlation Techniques." *Bioinformatics* 25(5): 621–27. https://academic.oup.com/bioinformatics/articlelookup/doi/10.1093/bioinformatics/btp036.
- Kozakov, D. et al. 2011. "Structural Conservation of Druggable Hot Spots in Protein-Protein Interfaces." *Proceedings of the National Academy of Sciences* 108(33): 13528–33. http://www.pnas.org/cgi/doi/10.1073/pnas.1101835108.
- Kozakov, Dima et al. 2015. "The FTMap Family of Web Servers for Determining and Characterizing Ligand-Binding Hot Spots of Proteins." *Nature Protocols* 10(5): 733–55. http://www.nature.com/articles/nprot.2015.043.
- Kyte, Jack, and Russell F. Doolittle. 1982. "A Simple Method for Displaying the Hydropathic Character of a Protein." *Journal of Molecular Biology* 157(1): 105–32. https://linkinghub.elsevier.com/retrieve/pii/0022283682905150.
- Ngan, Chi-Ho et al. 2012. "FTSite: High Accuracy Detection of Ligand Binding Sites on Unbound Protein Structures." *Bioinformatics* 28(2): 286–87. https://academic.oup.com/bioinformatics/articlelookup/doi/10.1093/bioinformatics/btr651.
- De Oliveira Rodrigues, Thiago Assis, Larissa Fernandes Leijôto, Poliane C. Oliveira Brandão, and Cristiane Neri Nobre. 2015. "Predição de Função de Proteínas Através Da Extração de Características Físico-Químicas." *Revista de Informática Teórica e Aplicada* 22(1): 29. http://seer.ufrgs.br/index.php/rita/article/view/RITA-VOL22-NR1-29.
- Pettersen, Eric F. et al. 2004. "UCSF Chimera?A Visualization System for Exploratory Research and Analysis." *Journal of Computational Chemistry* 25(13): 1605–12. http://doi.wiley.com/10.1002/jcc.20084.