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Part A: Results for a Lethal Allele in an Effectively Infinite Popula-
tion

In this part of the Supplementary Material we determine a number of results in-

cluding: (i) the equation obeyed by the frequency of the lethal allele in adults in an

effectively infinite population, (ii) the equilibrium value of this frequency, (iii) the exact

solution for the frequency as a function of time, and (iv) the ‘half time to equilibrium’.

The analysis is based on a model of a diploid dioecious population with equal sex

ratio. This has the following discrete-generation lifecycle, where census is made in adults.

Lifecycle

Adults

(start of generation)

↓
gamete production with mutation;

random mating

Zygotes

↓
death of all adults;

viability selection on zygotes

Juveniles

↓ number regulation

Adults

(start of next generation)

We assume each adult produces the same very large (effectively infinite) number

of gametes, and that viability selection acts in zygotes at a single biallelic locus. We

denote the alleles at this locus by a and A. The three possible genotypes have the

relative viabilities given by Eq. (1), namely aa: 0, aA: 1 − h and AA: 1, where a is

the disease-causing allele and A the wild type allele. To maintain generality, the relative

fitness of the heterozygote, 1− h, which we simply term the fitness of the heterozygote,

has to be non-negative (1− h ≥ 0) but is otherwise unrestricted.

Mutations are taken to be one-way, from the A allele to the a allele, and in each

generation each A allele has probability u of mutating.

To begin, we take the (relative) frequencies of the different genotypes in adults, at

the start of a particular generation, termed the present generation, to be

Genotype aa aA AA

Frequency in adults P = 0 Q R
(A1)
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with lethality of the aa genotype reflected by P = 0 and as a consequence Q+R = 1.

The frequency of the a allele in adults at the start of the present generation is

denoted by X. We have X = Q/2 while the corresponding frequency of the A allele is

Y = 1−X = 1−Q/2.

Dynamics of the allele frequency

In the first instance we need to formulate the dynamics of the population in terms of

genotype frequencies, on which selection directly acts. However, we shall subsequently

express the resulting dynamics in terms of the frequency of the a allele in adults, namely

X.

Proceeding, we note that mutation occurs during gamete production, and the fre-

quency of the a allele in gametes is

X∗ = X + uY = X + u(1−X) = u+ (1− u)X = u+ (1− u)
Q

2
(A2)

while that of the A allele is

Y ∗ = Y − uY = (1− u) (1−X) = (1− u)

(
1− Q

2

)
. (A3)

After random mating, the frequencies of the aa, aA and AA genotypes in zygotes are

P ∗ = (X∗)2 , Q∗ = 2X∗Y ∗, R∗ = (Y ∗)2 , (A4)

respectively.

The frequencies of the aa, aA and AA genotypes in juveniles, after viability selection

has acted, are given by

P ∗∗ = 0 (A5)

Q∗∗ =
(1− h)Q∗

(1− h)Q∗ +R∗
=

2 (1− h)X∗

Y ∗ + 2 (1− h)X∗
(A6)

R∗∗ =
R∗

(1− h)Q∗ +R∗
=

Y ∗

Y ∗ + 2 (1− h)X∗
(A7)

respectively.

When the size of the adult population is effectively infinite, the effectively infinite

number of juveniles present suffer no frequency changes when non-selective thinning (or

3



number regulation) occurs. That is, there is no random genetic drift. Effectively, the

juveniles simply proceed to become the adults of the next generation. The frequency of

the aA genotype in the adults of the next generation, written Q′, then obeys Q′ = Q∗∗

while the frequency of the a allele in the next generation, written X ′, is

X ′ =
Q′

2
=
Q∗∗

2
. (A8)

We can use Eqs. (A2), (A3) and (A6) to express Q∗∗ in terms of the frequency of the a

allele, X, of the given generation. We write this as

Q∗∗ = 2X + 2F (X) (A9)

where we have introduced the function

F (x) =
(1− h)u− [h+ (2− 3h)u]x− (1− 2h) (1− u)x2

[1 + (1− 2h)u] + (1− 2h)(1− u)x
. (A10)

The reason for the two factors of 2 in Eq. (A9) becomes apparent when we combine Eqs.

(A8) and (A9). We obtain the following equation, which determines X ′ in terms of X:

X ′ = X + F (X). (A11)

The quantity F (x) can then be seen to have the interpretation as the deterministic

evolutionary force that acts on the frequency of the a allele when it has the value x.

Equilibrium allele frequency

Due to the form of F (x), Eq. (A11) can be explicitly solved (see below) and generally

leads to the a allele achieving a stable equilibrium frequency, which we write as X̂. The

explicit solution for X̂, which obeys a quadratic equation, can be written as

X̂ =
2 (1− h)u

h+ (2− 3h)u+
√
h2(1 + u)2 + 4 (1− 2h)u

. (A12)

Approximate equilibrium results

Following from Eq. (A12), we note that when h = 0 we have the exact result

X̂ =
√
u

1+
√
u
which can be written as X̂ =

√
u× (1 +O (

√
u)).

Additionally, it is possible to expand X̂ of Eq. (A12) in the parameter ε = u
h2 ,

assuming ε is small. Small ε (ε � 1) corresponds to |h| �
√
u and there are two cases

to analyse.
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Case 1: h > 0

When h > 0 we have X̂
h(1−h) = ε + (h2 + h − 1)ε2 + O

(
ε3
)
. This allows us

to write X̂ = h(1− h)ε× (1 +O(ε)) which can be written as X̂ = (1−h)u
h ×(

1 +O
(
u
h2

))
.

Case 2: h < 0

When h < 0 we have − (1−2h)X̂
h = 1+(1−h)ε−(h2−3h+1)(1−h)ε2 +O(ε3).

This allows us to write X̂ = − h
1−2h × (1 +O(ε)) = − h

1−2h ×
(
1 +O

(
u
h2

))
.

The above results appear in Eqs. (10), (11) and (12) of the main text.

Exact solution for the dynamics of the frequency

To determine the exact solution of the deterministic equation X ′ = X + F (X) (Eq.

(4) for the frequency of the a allele in an effectively infinite population, we start by

writing Eq. (4) as

X ′ = X + F (X) =
(1− h)u+ (1− h)(1− u)X+

1 + (1− 2h)u+ (1− 2h) (1− u)X
≡ a+ bX

c+ dX
. (A13)

Subtracting the equilibrium solution (X̂) from both sides yields

X ′ − X̂ =
a+ bX

c+ dX
− X̂

=

=

[
a+ (b− c) X̂ − dX̂2

]
+
(
b− dX̂

)(
X − X̂

)
(
c+ dX̂

)
+ d

(
X − X̂

) . (A14)

The term in square brackets vanishes because X̂ obeys F (X̂) = 0 and this allows us to

simplify Eq. (A14) to X ′ − X̂ =
(b−dX̂)(X−X̂)

(c+dX̂)+d(X−X̂)
or equivalently

1

X ′ − X̂
= A+B

1

X − X̂
(A15)

where

A =
d

b− dX̂
=

(1− 2h)

(1− h)− (1− 2h) X̂
(A16)
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and

B =
c+ dX̂

b− dX̂
=

1 + (1− 2h)u+ (1− 2h) (1− u)X̂

(1− u)
[
(1− h)− (1− 2h) X̂

] . (A17)

With Z ′ = 1
X′−X̂ and Z = 1

X−X̂ , Eq. (A15) can be written as Z
′ = A+BZ. Introducing

an explicit time index t so Zt is the solution in generation t, we have Zt+1 = A + BZt,

with solution Zt = A
1−B +Bt

(
Z0 − A

1−B

)
. This corresponds to

Xt = X̂ +

[
Bt

(
1

X0 − X̂
+R

)
−R

]−1

(A18)

where we have set

R = − A

1−B . (A19)

Equation (A18) constitutes the exact solution of X ′ = X + F (X).

The half time to equilibrium

For the purposes of this part, we shall explicitly indicate the h dependence of X̂, R

and B by writing them as X̂(h), R(h) and B(h), respectively.

For intermediate times, as described in the main text, the scenario is that the dom-

inance coeffi cient, h, has the value h = 0 for a long time prior to t = 0 (so equi-

librium is achieved by t = 0), and then there is a jump in the value of h, at time

t = 0, from h = 0 to h = h∗ (with h∗ < 0). We then have X0 = X̂(0). If h

stays at the value h∗ indefinitely, then at long times Xt approaches X̂(h∗). The ‘half

time to equilibrium’ is the time it takes (from time t = 0) to reach the midpoint

value X̂(0) +
[
X̂(h∗)− X̂(0)

]
/2 =

[
X̂(0) + X̂(h∗)

]
/2. We write this time as T1/2

and its value follows from solving a special case of Eq. (A18), namely X̂(0)+X̂(h∗)
2 =

X̂(h∗) +
[
BT1/2(h)

(
1

X̂(0)−X̂(h∗)
+R(h)

)
−R(h)

]−1
. The solution is

T1/2 = 1
lnB(h) ln

(
R(h)− 2

X̂(h∗)−X̂(0)

R(h)− 1
X̂(h∗)−X̂(0)

)

'
ln
(
|h∗|

1+2|h∗|
1√
u

)
ln(1+|h∗|)

 , intermediate times (A20)

where the second line is the approximation obtained by expanding the arguments of each

logarithm in u, and keeping only the leading term.

For later times, as described in the main text, the scenario is that the dominance

coeffi cient, h, has the value h = h∗ for a long time prior to a given time tf (taken as
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tf = 2000 in the main text, with equilibrium achieved by time tf ). There is then a jump

in the value of h, at time t = tf , from h = h∗ to h = 0. We now have X0 = X̂(h∗) and at

long times after t = tf we have that Xt approaches X̂(0). With similar considerations

to the case of intermediate times, we find the time it takes to reach the midpoint value

(from time t = t0) is

T1/2 = 1
lnB(0) ln

(
R(h)+ 2

X̂(h∗)−X̂(0)

R(h)+ 1
X̂(h∗)−X̂(0)

)

'
ln
(

1+4
√
u−8u− 8u

|h∗|+
2
√
u

|h∗|−
2u
h∗2

)
2
√
u

'
ln
(

1+ 2
√
u

|h∗|−
2u
h∗2

)
2
√
u


, later times (A21)

where the second line is the approximation obtained by expanding the argument of

logarithm in the numerator, in u and keeping all terms up to O(u), while the denominator

is the leading term in an expansion in
√
u; the third line discards terms that are small

when h∗ = −0.01 and u = 10−5 or 10−8, and hence applies to parameters in the vicinity

of those adopted in the main text.

Part B: Results for a Lethal Allele in a Finite Population - the Mod-
ified Wright-Fisher Model

In this part of the Supplementary Material we extend the analysis presented in Part

A, to determine the behaviour of the frequency of the lethal allele in a finite human

population.

Notation

We shall make repeated use of binomial and multinomial random variables, and it

is convenient to present here the notation we adopt and some basic properties of these

random variables.

We use Bin (n, p) to denote a binomial random variable (not a distribution) with

parameters n and p. The quantity Bin (n, p) equals the random number of successes on

n independent trials, where p is the probability of success on each trial. Thus Bin (n, p)

can take the values 0, 1, ..., n. When we encounter more than one independent binomial

random variable, we shall distinguish them by a superscript, for example Bin(1) (n, p)

and Bin(2) (n, p), to emphasize their independence.
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We use M(n,p) = (M1(n,p),M2(n,p),M3(n,p)) to constitute a triplet of random

numbers that make up a multinomial random variable (not a distribution) with pa-

rameters n and p = (p1, p2, p3). The quantity M(n,p) contains the random num-

ber of times each of three categories are achieved on n independent trials, where p

contains the probabilities of falling into each of the three categories on a single trial.

With i = 1, 2 or 3, the quantity Mi(n,p) can take the values 0, 1, ..., n, subject to

M1(n,p) +M2(n,p) +M3(n,p) = n.

Background

In the lifecycle adopted in this work (explicitly given in Part A of the Supplementary

Material), a generation starts with adults. We now take the number of adults in the

population in a particular generation, termed the present generation, to be finite, and

given by N . This number is the census population size.

The frequencies of the different genotypes in adults are as in Eq. (A1) of Part A of

the Supplementary Material. That is aa: P = 0, aA: Q and AA: R, respectively.

Since P = 0 and P +Q+R = 1 we have R = 1−Q, thereby indicating that for adults
there is only a single independent genotype frequency. This is a fact we will exploit in

the finite population analysis.

Reproduction

Mutation occurs during gamete production and we have assumed that mutation is

only from the A allele to the a allele, and in each generation each A allele has a probability

of u of mutating.

Let

P (a|aA) =

(
the probability a randomly picked gamete carries the a

allele, given it was produced by an aA genotype adult.

)

Basic considerations lead to

P (a|aA) =
1 + u

2
. (B1)

Additionally, mutation of the A allele means an AA genotype adult has a non-zero

probability of producing gametes that carry the a allele. In particular, the probability

that a randomly picked gamete carries the a allele, given it was produced by an AA

genotype adult, is

P (a|AA) = u. (B2)
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Related probabilities, that we have not specified, namely P (A|aA) and P (A|AA) are

given by 1− P (a|aA) and 1− P (a|AA), respectively.

From the genotype frequencies given in Eq. (A1) of Part A of the Supplementary

Material, the probability that a randomly picked adult has genotype aA is P (aA) = Q,

while the corresponding probability the genotype is AA is P (AA) = R = 1 − Q. Thus
the probability that a randomly picked gamete in a randomly picked individual carries

an a allele, written P (a), is

P (a) = P (a|aA)P (aA) + P (a|AA)P (AA)

=
1 + u

2
Q+ u(1−Q) = u+ (1− u)

Q

2
. (B3)

This coincides with the frequency of the a allele in an effectively infinite population

(written as X∗ in Part A of the Supplementary Material and given in Eq. (A2)). The

corresponding probability that a randomly picked gamete carries an A allele is

P (A) = 1− P (a) = (1− u)

(
1− Q

2

)
. (B4)

The gametes become assembled into zygotes under random mating. We write the

probabilities of a randomly picked zygote having the genotype aa, aA or AA as qaa, qaA
or qAA, respectively. Random mating entails

qaa = [P (a)]2 , qaA = 2P (a)P (A) and qAA = [P (A)]2 (B5)

and it is convenient to collect these probabilities into the row vector q given by

q = (qaa, qaA, qAA) . (B6)

We now assume that a total of N × f zygotes are produced, where f is the mean
fertility of individuals of the population. We take f to be independent of genotype and

f ≥ 1. Let the random numbers of aa, aA and AA genotype zygotes produced be given

by N∗aa, N
∗
aA and N

∗
AA, respectively. We adopt the simplest assumption, that a pair of

randomly picked adults sexually produce a single offspring (zygote), with the procedure

repeated Nf times, thereby producing Nf zygotes. We then have

(N∗aa, N
∗
aA, N

∗
AA) = (M1(Nf,q),M2(Nf,q),M3(Nf,q)) (B7)

where (M1(n,p),M2(n,p),M3(n,p)) denote a triplet of numbers that make up a multino-

mial random variable with parameters n and p = (p1, p2, p3).
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Selection and number regulation

We next implement viability selection, taking the aa, aA and AA genotypes to have

the viabilities Vaa, VaA and VAA, respectively, where the V ’s are the probabilities of

surviving to reproduce, and all lie in the range [0, 1]. Viability selection is taken to

act independently on each individual zygote, and being probabilistic, viability selection

contributes to the randomness in the numbers of genotypes. As an example of the

randomness introduced by viability selection, consider an aA genotype individual which

has probability VaA of surviving viability selection and probability 1 − VaA of dying.

For NaA such individuals, the random number surviving viability selection is a binomial

random variable with parameters NaA and VaA. We formalise this as follows. Let

Bin(i)(n, v), for i = 1, 2 and 3, be three independent binomial random numbers with

parameters n and v. Then after viability selection, the three genotypes are present

in the population in the numbers N∗∗aa = Bin(1)(N∗aa, Vaa), N
∗∗
aA = Bin(2)(N∗aA, VaA)

and N∗∗AA = Bin(3)(N∗AA, VAA), respectively. Lethality of the aa genotype corresponds to

Vaa = 0 and hence to N∗∗aa = Bin(1)(Naa, Vaa) = 0. Furthermore, because of the relative

fitness assignments in Eq. (1) of the main text, there is a relationship between the

viabilities of the aA and AA genotypes, namely VaA/VAA = 1 − h, but for much of the
algebra we find it more transparent to use VaA and VAA. In terms of these viabilities,

the numbers of the three genotypes present in the population, after viability selection,

are given by

(N∗∗aa , N
∗∗
aA, N

∗∗
AA) =

(
0,Bin(2)(N∗aA, VaA),Bin(3)(N∗AA, VAA)

)
. (B8)

For many modern human populations there is a very low level of excess offspring

production, beyond that needed to reproduce the number of individuals in the present

generation. We shall incorporate this into the analysis by assuming that after viability

selection has taken place, no non-selective deaths occur before the end of a generation.

In such a case all post-selection zygotes proceed to become adults. Writing the numbers

of the aa, aA and AA genotype adults at the start of the next generation as N ′aa, N
′
aA

and N ′AA, respectively, it follows (under the ‘no non-selective deaths’assumption) that

N ′aa = 0, N ′aA = N∗∗aA and N
′
AA = N∗∗AA. Equations (B7) and (B8) then lead to

N ′aA = Bin(2) (M2 (fN,q) , VaA) (B9)

and

N ′AA = Bin(3) (M3 (fN,q) , VAA) . (B10)
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With V̄ defined as

V̄ = qaAVaA + qAAVAA (B11)

we shall make future use of three moment generating functions associated with N ′aA and

N ′AA. These are

D(µ, v) = E
[
eµN

′
aA+vN ′AA

]

=
(
1− V̄ + qaAVaAe

µ + qAAVAAe
v
)fN

, (B12)

D1(µ, v) = E
[
eµN

′
aA+vN ′AA |(N ′aA, N ′AA) 6= (0, 0)

]

=

(
1− V̄ + qaAVaAe

µ + qAAVAAe
v
)fN − (1− V̄ )fN

1−
(
1− V̄

)fN (B13)

and

D2(µ, v) = E
[
eµN

′
aA+vN ′AA |N ′aA +N ′AA = N

]

=
[
qaAVaA
V̄

eµ +
(

1− qaAVaA
V̄

)
ev
]N

(B14)

where the quantities µ and v are dummy variables, and the results for the three mo-

ment generating functions follow from standard properties of binomial and multinomial

random variables (Rohatgi and Ehsanes Saleh, 2015).

Proceeding, we note that the quantity N ′aA + N ′AA represents the number of adults

contributed by the present generation to the next generation. From Eq. (B12) it follows

that N ′aA+N ′AA is a binomial random variable
1 with parameters fN and V̄ (= the mean

viability). The expected value of N ′aA +N ′AA is then

E[N ′aA +N ′AA] = NfV̄ (B15)

and its variance is

Var
(
N ′aA +N ′AA

)
= NfV̄

(
1− V̄

)
. (B16)

1To determine the distribution of N ′aA +N ′AA the relevant moment generating function is D(µ, µ) =

E
[
eµ(N′aA+N′AA)

]
. Equation (B12) yields D(µ, µ) =

(
1− V̄ + V̄ eµ

)fN
, which corresponds to the mo-

ment generating function of a binomial random variable with parameters fN and V̄ .
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There are two similar ways to proceed.

Approach 1

In the first way, we note that Eq. (B15) indicates that the census population size

remains, on average, constant over time if fV̄ = 1. This makes it natural to choose the

mean fertility to be given by

f = 1/V̄ . (B17)

This is equivalent to saying the absolute mean fitness of the population is unity, as befits

a population of constant size. With such an approach, the number of adults in the next

generation, N ′aA + N ′AA, will have an expected value of N , and will have fluctuations

around this value of the order of
√
NfV̄

(
1− V̄

)
=
√
N
(
1− V̄

)
.

Approach 2

A second way to proceed is to calculate all statistics of N ′aA and N
′
AA, when con-

ditioned precisely on N ′aA + N ′AA = N . This way of proceeding leads (trivially) to

E[N ′aA + N ′AA] = N , indicating that a condition like f = 1/V̄ has effectively been im-

posed on the generation to generation dynamics. The conditioning has the additional

effect of omitting any fluctuations in N ′aA +N ′AA.

Since the quantity of key importance to our investigation is the frequency of the a

allele, or closely related, the frequency of the aA genotype, let us compare Approach 1

and Approach 2 for the mean and variance of the frequency of the aA genotype in the

following generation. Explicitly, this frequency is

Q′ =
N ′aA

N ′aA +N ′AA
. (B18)

Approach 1, conditioned onN ′aA+N ′AA 6= 0 (conditioning is required sinceQ′ is undefined

when N ′aA + N ′AA = 0), leads to the exact result E[Q′] = VaAqaA/V̄ which follows2

from Eq. (B13). Approach 2, without requiring any additional conditioning (since

Q′ = N ′aA/N is never undefined), directly leads to the identical result E[Q′] = VaAqaA/V̄

using Eq. (B14).

We can further show with some work that Approach 1 leads to the variance3 Var(Q′) =
1
N
q2VaA
V̄

(
1− q2VaA

V̄

)
with corrections of order N−2, while Approach 2 leads precisely to

2To obtain an expression for E[Q′] ≡ E [Q′|(N ′aA, N ′AA) 6= (0, 0)] from Eq. (B13) we use E [Q′] =∫∞
0

[
∂
∂µ
D1(µ, v)

]
µ=−λ,v=−λ

dλ. Explicit evaluation of the integral yields E[Q′] = VaAqaA/V̄ .
3To calculate the variance of Q′ under Approach 1 we leave implicit that (N ′aA, N

′
AA) 6=

(0, 0). Then Var (Q′) = E
[
(Q′)

2
]
− (E [Q′])

2. We already know E [Q′] = VaAqaA/V̄ and

12



Var(Q′) = 1
N
q2VaA
V̄

(
1− q2VaA

V̄

)
. Thus Approach 1 and Approach 2 lead to variances that

agree to leading order in N−1, and differ only at higher order in N−1.

The precise identity of the means and the closeness of the variances under the two

approaches lead us to infer that the level of the fluctuations that occur in the population

size, from generation to generation, under Approach 1 are not particularly important

to the dynamics of the a allele, and from a practical point of view, Approach 1 and

Approach 2 may be treated as being equivalent (both approaches lead to a near identical

diffusion approximations, which are characterised by the mean and variance of Q′).

Given this, we shall proceed with Approach 2, which is much simpler and more convenient

to use than Approach 1. In particular, we note that Eq. (B14) indicates that N ′aA
is a binomial random variable with parameters N and paAVaA/V̄ , which we write as

N ′aA = Bin
(
N, paAVaA

V̄

)
. If follows that under Approach 2, the frequency of the aA

genotype in the next generation is given as

Q′ =
N ′aA
N

=
Bin

(
N, paAVaA

V̄

)
N

. (B19)

It may be verified, using Eqs. (B3), (B4) and (B11) that in terms of the frequency of

the a allele of the present generation, namely X = Q/2, that

paAVaA
V̄

= 2X + 2F (X) (B20)

where F (x) is the deterministic evolutionary force that acts on the a allele’s frequency

in an effectively infinite population, when the frequency has the value x (see Eq. (5) of

the main text). We can thus convert Eq. (B19) to an equation for the frequency of the

write E
[
(Q′)

2
]

=
∫∞

0
λ
[
∂2

∂µ2
D1(µ, v)

]
µ=−λ,v=−λ

dλ = fNqaAVaA
∫∞

0
λe−λ

(1−V̄+V̄ e−λ)fN−1

1−(1−V̄ )fN
dλ +

fN (fN − 1) (qaAVaA)2 ∫∞
0
λe−2λ (1−V̄+V̄ e−λ)fN−2

1−(1−V̄ )fN
dλ. Changing variables in the integrals to z =

1 − e−λ gives E
[
(Q′)

2
]

= I1 + I2 where I1 = −fNqaAVaA
∫ 1

0
ln(1 − z)

(1−V̄ z)fN−1

1−(1−V̄ )fN
dz and I2 =

−fN (fN − 1) (qaAVaA)2 ∫ 1

0
ln(1− z) (1− z) (1−V̄ z)fN−2

1−(1−V̄ )fN
dz. We make free use of f = 1/V̄ which applies

under Approach 1. We have
(
1− V̄

)fN
=
(
1− V̄

)N/V̄
< e−N and omit this negligible term in the

denominators of I1 and I2. For I1 we approximate ln(1 − z) by −z,
(
1− V̄ z

)fN−1
by exp(−Nz), and

extend the upper limit to ∞. For I2 we approximate ln(1− z) (1− z) by −z
(
1− z

2

)
,
(
1− V̄ z

)fN−2
by

e−Nz ×
(

1− Nz2V̄
2

+ 2V̄ z
)
, and extend the upper limit to ∞. We obtain I1 = 1

N
qaAVaA

V̄
+O(N−2) and

I2 =
(
1− 1

N

) (
qaAVaA

V̄

)2

+ O(N−2). Thus E
[
(Q′)

2
]

= 1
N
qaAVaA

V̄
+
(
1− 1

N

) (
qaAVaA

V̄

)2

+ O(N−2) and

Var (Q′) = 1
N
qaAVaA

V̄

(
1− qaAVaA

V̄

)
+O(N−2).
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a allele which reads

X ′ =
Bin (N, 2X + 2F (X))

2N

Wright-Fisher model

for a lethal genotype
. (B21)

Equation (B21) determines the dynamics of the frequency of the lethal a allele, under

a stochastic process that is the direct analogue of the Wright-Fisher model. We note

that two arguments of the binomial random variable in Eq. (B21) differ from what

is normally encountered when selection is weak (in the sense that selection coeffi cients

are small compared with 1). In particular, when the dynamics in an effectively infinite

population is governed by X ′ = X + F (X), then in a finite population under a Wright-

Fisher model with weak selection we have

X ′ =
Bin(2N,X + F (X))

2N

Wright-Fisher model

for weak selection.
(B22)

Thus the Wright-Fisher model for a lethal genotype, Eq. (B21), differs in the placement

of two factors of 2 in the arguments of the binomial random variable, compared with

the Wright-Fisher model for weak selection, Eq. (B22).

In Figure S1 we provide a direct illustration, based on simulations, that the features

of the Wright-Fisher model for lethal mutations, Eq. (B21), can yield significantly

different results to a Wright-Fisher model that is based on a weak selection, Eq. (B22).

We use a value of the dominance coeffi cient of h = −0.2 that corresponds to a case of

overdominance where the heterozygote fitness is 20% higher than that of the non-lethal

homozygote. Larger values of |h| have been found applicable to sickle cell anemia (Fong
et al. 2015).
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Figure S1 Caption: In this figure we compare the behaviour of the

mean allele frequency, E[Xt], derived from simulations of the Wright-Fisher

model for a lethal mutation, Eq. (B21), with the corresponding behaviour

that would be obtained from the Wright-Fisher model if a weak selection

approximation applied, namely Eq. (B22). For the figure, we used a census

population size of N = 100, an initial frequency of the lethal allele of X0 =

1/200, a mutation rate of u = 10−5, a dominance coeffi cient of h = −0.2,

and 105 replicate trajectories.

– – – – – – – – – – – – – – – – – – –

We can gain additional insight into Eq. (B21) by showing that this equation arises

from the assumptions of there being an infinite number of gametes and an infinite number

of zygotes, that are implicitly made in the standard Wright-Fisher model. We proceed

as in Part A of the Supplementary Material, where all equations down to Eq. (A7) are

derived under the assumptions of infinite numbers of gametes and zygotes, and hence

apply. We then thin the population to the census size by non-selectively picking N

individuals from the population of juveniles at random. There are only two genotypes

present in the population of juveniles, namely the aA and AA genotypes, and these

are in the proportions Q∗∗ (Eq. (A6)) and R∗∗ (Eq. (A7)), respectively. Thus the

number of aA genotype individuals picked is given by a binomial random number with
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parameters N and Q∗∗, which in the notation used in this work is Bin(N,Q∗∗). This

yields the frequency of the aA genotype in the adults of the next generation of Q′ =

Bin(N,Q∗∗)/N . The frequency of the a allele in the next generation is X ′ = Q′/2 =

Bin(N,Q∗∗)/(2N). Lastly, by Eq. (A9), we have Q∗∗ = 2X + 2F (X) and we arrive at

X ′ = Bin(N, 2X + 2F (X))/(2N), which is Eq. (B21).

It would thus appear that the assumption of the production of an effectively infinite

number of zygotes, which is made in the standard Wright-Fisher model, is relatively

innocuous in the context of lethal mutations, and makes little difference to results when

the population size, N , is such that terms of order 1/N2 in e.g., the variance that is

input into the population each generation, can be neglected compared with the leading

term, which is of order 1/N .

Part C: Diffusion analysis for a finite population

In this part of the Supplementary Material we derive the description of the frequency

of the lethal allele in adults, X, in a finite population, under a diffusion approximation

of Eq. (7) of the main text. Such an approximation (Kimura 1955) should be applicable

for N � 1 (Kimura 1955).

With Bin(n, p) a binomial random variable (not a distribution) with parameters n

and p, corresponding to the number of independent trials and the probability of suc-

cess on a single trial, respectively, the mean is E [Bin(n, p)] = np and the variance is

Var(Bin(n, p)) = np(1 − p). It follows that conditional on the value of X, namely that
X = x, Eq. (7) yields

E[(X ′ −X) |X = x] = E

[(
Bin(N, 2X + 2F (X)

2N
−X

)
|X = x

]

= F (x)

(C1)

where F (x) is given in Eq. (5) of the main text. Defining V (x) as the conditional

variance: V (x) = Var (X ′|X = x) we have

V (x) = Var

(
Bin(N, 2X + 2F (X)

2N
|X = x

)
=
N [2x+ 2F (x)] [1− (2x+ 2F (x))]

(2N)2

=
[x+ F (x)] [1− (2x+ 2F (x))]

2N
. (C2)
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The diffusion approximation of Eq. (7) treats both time and the frequency of the a

allele as continuous quantities, and replaces the frequency of the a allele by a continuous

function of continuous time, which we write asX(t). Then the functionX(t) incorporates

randomness and obeys the stochastic differential equation

dX(t) = F (X(t))dt+
√
V (X(t))dW (t) (C3)

where W (t) is a Gaussian random function of time - a Wiener process (Tuckwell 1995).

Let φ(x, t) denote the probability density of X(t), when evaluated at x. From Eq.

(C3) it directly follows from Eq. (C3) that φ(x, t) obeys

−∂φ(x, t)

∂t
= −1

2

∂2

∂x2
[V (x)φ(x, t)] +

∂

∂x
[F (x)φ(x, t)] (C4)

(Tuckwell 1995). This is the diffusion equation at the heart of the diffusion approxima-

tion (Kimura 1955).

Part D: Markov chain approach to the Wright-Fisher model

In this part of the Supplementary Material we present details of the Markov chain

approach to Wright-Fisher model described by Eq. (7) of the main text.

We use Xt to denote the random value of the frequency of the disease-causing a allele

in generation t. We also use the labels m and n to denote the number of the lethal (a)

alleles in the population. Both n and m take the values 0, 1, 2, .., 2N , and the possible

frequencies of the a allele (i.e., the possible values of Xt) are given by

xn =
n

2N
. (D1)

As pointed out in the main text, the dynamics ensures that only the frequencies xn ≤ 1
2

(i.e., with n ≤ N) are actually produced in a population, and hence are possible with a
lethal genotype. We thus restrict n to n ≤ N .

We denote the probability distribution of the frequency of the a allele in generation t

by the column vectorΦ(t). The n’th element ofΦ(t) is given by Φn(t) = Prob (Xt = xn).

The distribution obeys the equation

Φ(t+ 1) = WΦ(t) (D2)

whereW is the transition matrix of the Markov chain. Elements ofW are the conditional

probabilities Wm,n = Prob (Xt+1 = xm|Xt = xn). While the Wm,n are formally defined
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for m and n taking the values 0, 1, 2, .., 2N , for calculations, only the values 0, 1, ..., N

are required. We have

Wm,n =

(
N

m

)
[2xn + 2F (xn)]m [1− 2xn − 2F (xn)]N−m (D3)

where
(
N
m

)
= N !

(N−m)!m! denotes a binomial coeffi cient. This transition matrix differs from

the form of the transition matrix of a weak selection problem with deterministic force

F (x), which is given by Wm,n =
(

2N
m

)
[xn + F (xn)]m [1− xn − F (xn)]2N−m where m and

n take the values 0, 1, 2, .., 2N .

Equation (D2) allows determination of the distribution of the a allele’s frequency

in different generations, thereby allowing calculation of statistics that depend on the

frequency.
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