
Appendix
Consider a Recurrent Neural Network (RNN) whose state vector v evolves according to:

dvi

dt
= −vi + gi

 N∑
j=1

wijvj + Ii

 , i = 1, . . . , N (1)

where N is the number of neurons of the network and Ii is an external input to the i-th neuron.
There is no restriction on the choice of the activation function gi as long as it is monotone and
differentiable [Pineda(1988)]. In the most general case, it is possible to define three different subsets
of the network units:

- the subset I of input units;

- the subset O of output units;

- the subset H of hidden units.

The goal of the algorithm is to adjust the weights wij so that, for a given initial condition v0 = v(t0)
and a given vector of input I, the RNN (1) converges to a desired fixed point v∞ = v(t∞). This
is obtained by minimizing a loss function E which measures the euclidean distance between the
desired fixed point and the actual fixed point:

E = 1
2

N∑
i=1

J2
i = 1

2

N∑
i=1

(Ti − v∞i )2 (2)

where Ti is the i-th desired output state component and Ji is the i-th component of the difference
between the current fixed point v∞i and the target point Ti. Observe that E depends on the weight
matrix W through the fixed point v∞(W, I). Therefore, one way to drive the system to converge
to a desired attractor is to let it evolve in the weight parameter space along trajectories which have
opposite direction of the gradient of E :

dwij

dt
= −η ∂E

∂wij

, η > 0 (3)

where η is the learning rate and must be small enough so that the state variable v can always be
considered to be at steady state [Pineda(1988)]. Computing now the derivatives in (3), one obtains

dwij

dt
= −η ∂

∂wij

(
1
2

N∑
k=1

J2
k

)
= −η

N∑
k=1

Jk
∂Jk

∂wij

= = η
N∑

k=1
Jk
∂v∞k
∂wij

(4)

and the derivative of v∞k with respect to wij is derived by observing that the fixed points of (1)
must satisfy the nonlinear equation:

v∞k = gk

(
N∑

s=1
wksv

∞
s + Ik

)
. (5)

Differentiating (5) with respect to wij one obtains:

∂v∞k
∂wij

= g′k(Î∞k )
[

N∑
s=1

∂wks

∂wij

v∞s +
N∑

s=1
wks

∂v∞s
∂wij

]
(6)

1



where Î∞k =
(∑N

s=1 wksv
∞
s + Ik

)
.

Solving (6) in terms of ∂v∞
k

∂wij
and defining Lks = δks − g′k(Î∞k )wks where δks is the kronecker delta,

it follows that: 
∑N

s=1 Lis
∂v∞

s

∂wij
= g′i(Î∞i )v∞j k = i∑N

s=1 Lks
∂v∞

s

∂wij
= 0 k 6= i

(7)

and therefore for the generic k-th component
∂v∞k
∂wij

= L−1
ki g

′
i(Î∞i )v∞j (8)

In conclusion, (3) simply becomes:

dwij

dt
= η

[
g′i(Î∞i )

N∑
k=1

JkL
−1
ki

]
v∞j . (9)

Unfortunately, (9) requires the reciprocal of Lki for computing the weights’ update but, considering

yi = g′i(Î∞i )
N∑

k=1
JkL

−1
ki (10)

one can avoid this process by introducing an associated dynamical system. Indeed, assuming that
g′i(Î∞i ) 6= 0 ∀Î∞i ∈ R and observing that Lki = Lik for construction, (10) is equivalent to:

N∑
k=1

L−1
ik Jk = yi

g′i(Î∞i )
. (11)

Solving (11) in terms of Jk one obtains:

Jk =
N∑

i=1
Lik

yi

g′i(Î∞i )
. (12)

Substituting now the explicit form for Lik, (12) becomes:

0 = −yk + g′k(Î∞k )
(

N∑
i=1

wikyi + Jk

)
(13)

which can be seen as the steady state of the following side network:

dyk

dt
= −yk + g′k(Î∞k )

(
N∑

i=1
wikyi + Jk

)
. (14)

Therefore, the system of differential equations is completely defined by:

dvi

dt
= −vi + gi

 N∑
j=1

wijvj + Ii

 (15)

dyk

dt
= −yk + g′k(Î∞k )

(
N∑

i=1
wikyi + Jk

)
(16)

dwij

dt
= ηy∞i v

∞
j (17)

Observe that, the weights’ update is dependent on the corresponding fixed points of the first two
equations.

2



References
[Pineda(1988)] Pineda, F. J. (1988). Generalization of back propagation to recurrent and higher

order neural networks. In Neural information processing systems. 602–611

3


