Appendix

Consider a Recurrent Neural Network (RNN) whose state vector v evolves according to:

dUZ' N .
dt :_Uz+gz Zwijvj—l—li 5 2:1,...,N (1)

Jj=1

where N is the number of neurons of the network and I; is an external input to the i-th neuron.
There is no restriction on the choice of the activation function g; as long as it is monotone and
differentiable [Pineda(1988)]. In the most general case, it is possible to define three different subsets
of the network units:

- the subset I of input units;
- the subset O of output units;

- the subset H of hidden units.

The goal of the algorithm is to adjust the weights w;; so that, for a given initial condition v° = v(t)
and a given vector of input I, the RNN (1) converges to a desired fixed point v = v(t.,). This
is obtained by minimizing a loss function F which measures the euclidean distance between the
desired fixed point and the actual fixed point:

1 N
Z JE =5 2 (=)’ (2)
=1

where T; is the ¢-th desired output state component and J; is the ¢-th component of the difference
between the current fixed point v5° and the target point 7;. Observe that £ depends on the weight
matrix W through the fixed point v>°(W,I). Therefore, one way to drive the system to converge
to a desired attractor is to let it evolve in the weight parameter space along trajectories which have

opposite direction of the gradient of F:
dwij o oF

= = n@wij, n>0 (3)

where 7 is the learning rate and must be small enough so that the state variable v can always be
considered to be at steady state [Pineda(1988)]. Computing now the derivatives in (3), one obtains

dwij
—_ — J —
dt 7 ow;; (Z k)

and the derivative of vp° with respect to w;; is derived by observing that the fixed points of (1)
must satisfy the nonlinear equation:

N
v = gr (Z WV +]k>) (5)

s=1

aJk N v
pu— p— 4
n E_: Jk ws (4)

Differentiating (5) with respect to w;; one obtains:

o0
ovy,

(9wij

S 8wk 82}00
— / [oo s oo
9 (1y°) [Z 8ww + Zwk‘sawij}

s=1

1

where f,‘;o = (Zévzl WiV + Ik)‘
Solving (6) in terms of % and defining Ly, = 0y — gk(I Jwys where dgs is the kronecker delta,

it follows that: A
{ N ngv =gi(I®we k=i

(7)

Zs:l Lks 8wij =0 k 7£ 7
and therefore for the generic k-th component
o 1
= L' gi(I°)v® 8
awij ki 9 z(i) j ()
In conclusion, (3) simply becomes:
dwi i ~ N _ 00
d =1 [QQ(IZOO> Z JkLkz‘I] Uy (9)
¢ k=1
Unfortunately, (9) requires the reciprocal of Ly; for computing the weights’ update but, considering
N
vi = gi(17°) > JuLi! (10)
k=1

one can avoid this process by introducing an associated dynamical system. Indeed, assuming that
gi(I2°) # 0 VI € R and observing that Ly; = Ly, for construction, (10) is equivalent to:

Z L;lik = yj . (11)

Yi
Jy, = ;Lkm (12)
Substituting now the explicit form for Ly, (12) becomes:
0= —yi + gi(I2) (X; Wikl + Jk> (13)
which can be seen as the steady state of the followi;g side network:
d;;: =~y + (1) (; WikYi + Jk) (14)

Therefore, the system of differential equations is completely defined by:

dUz‘ N

=

dyr [

o T T + g, (15 szkyz + Ji (16)
i=1

dwi» 50 . 00

dtj = Wi (17)

Observe that, the weights’ update is dependent on the corresponding fixed points of the first two
equations.

References

[Pineda(1988)] Pineda, F. J. (1988). Generalization of back propagation to recurrent and higher
order neural networks. In Neuwral information processing systems. 602-611

