Appendix

Consider a Recurrent Neural Network (RNN) whose state vector v evolves according to:
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where N is the number of neurons of the network and I; is an external input to the i-th neuron.
There is no restriction on the choice of the activation function g; as long as it is monotone and
differentiable [Pineda(1988)]. In the most general case, it is possible to define three different subsets
of the network units:

- the subset I of input units;
- the subset O of output units;

- the subset H of hidden units.

The goal of the algorithm is to adjust the weights w;; so that, for a given initial condition v° = v(t)
and a given vector of input I, the RNN (1) converges to a desired fixed point v = v(t.,). This
is obtained by minimizing a loss function F which measures the euclidean distance between the
desired fixed point and the actual fixed point:
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where T; is the ¢-th desired output state component and J; is the ¢-th component of the difference
between the current fixed point v5° and the target point 7;. Observe that £ depends on the weight
matrix W through the fixed point v>°(W,I). Therefore, one way to drive the system to converge
to a desired attractor is to let it evolve in the weight parameter space along trajectories which have

opposite direction of the gradient of F:
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where 7 is the learning rate and must be small enough so that the state variable v can always be
considered to be at steady state [Pineda(1988)]. Computing now the derivatives in (3), one obtains
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and the derivative of vp° with respect to w;; is derived by observing that the fixed points of (1)
must satisfy the nonlinear equation:
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Differentiating (5) with respect to w;; one obtains:
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where f,‘;o = (Zévzl WiV + Ik)‘
Solving (6) in terms of % and defining Ly, = 0y — gk(I Jwys where dgs is the kronecker delta,

it follows that: A
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and therefore for the generic k-th component
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In conclusion, (3) simply becomes:
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Unfortunately, (9) requires the reciprocal of Ly; for computing the weights’ update but, considering
N
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one can avoid this process by introducing an associated dynamical system. Indeed, assuming that
gi(I2°) # 0 VI € R and observing that Ly; = Ly, for construction, (10) is equivalent to:
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Substituting now the explicit form for Ly, (12) becomes:
0= —yi + gi(I2) (X; Wikl + Jk> (13)
which can be seen as the steady state of the followi;g side network:
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Therefore, the system of differential equations is completely defined by:
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Observe that, the weights’ update is dependent on the corresponding fixed points of the first two
equations.
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